Although it is known that chlorhexidine application may preserve resin-dentin bonds from degradation, the lowest optimal concentration and application time have yet to be established. This study evaluated the effects of different concentrations of chlorhexidine digluconate and different application times on the preservation of resin-dentin bonds formed using two etch-and-rinse adhesives. In experiment 1, after acid etching, the occlusal demineralized dentin was rewetted either with water or with 0.002, 0.02, 0.2, 2, or 4% chlorhexidine for 60 s. In experiment 2, the surfaces were rewetted with water, or with 0.002% or 2% chlorhexidine for 15 or 60 s. After this, both adhesives and composite resin were applied and light-cured. Bonded sticks (0.8 mm(2)) were tested under tension (0.5 mm min(-1)) immediately or after 6 months of storage in water. Two bonded sticks from each tooth were immersed in silver nitrate and analyzed quantitatively using scanning electron microscopy. Reductions in microtensile bond strengths and higher silver nitrate uptake were observed for both adhesives when the rewetting procedure was performed with water. Stable bonds were maintained for up to 6 months under all chlorhexidine conditions tested, irrespective of the chlorhexidine concentration and application time. The use of 0.002% chlorhexidine for 15 s seems to be sufficient to preserve resin-dentin interfaces over a 6-month period.
The incorporation of potassium nitrate and sodium fluoride in 10% carbamide peroxide at-home bleaching gel tested in this study did not reduce the TS and did not affect color change (RBR-4M6YR2).
Clinicians should opt to use in-office bleaching with a neutral gel than an acid product because the former causes a significant lower risk and intensity of tooth sensitivity.
SUMMARYThe current study evaluated the effect of 2% chlorhexidine digluconate (CHX) on the immediate and six-month resin-dentin bond strength (BS) and nanoleakage pattern (NL) of etch-andrinse adhesives when applied in aqueous or associated to the phosphoric acid conditioner. The occlusal enamel of 42 caries-free extracted molars was removed in order to expose a flat dentin surface. In groups 1 and 2 (control-C), the surfaces were acid etched with conventional phosphoric acid, and the adhesives Prime&Bond NT (PB) and Adper Single Bond 2 (SB) were applied after rinsing, drying and rewetting with water. In groups 3 and 4 (Ac/CHX), the adhesives were applied in a similar manner, however, a 2% CHX-containing acid was previously applied. In groups 5 and 6 (CHX), the adhesives were applied according to the control group; however, the rewetting procedure was performed with an aqueous solution of 2% CHX for 60 seconds. Composite buildups (Opallis, FGM) were constructed incrementally, and the specimens were longitudinally sectioned in the "x" and "y" directions to obtain bonded sticks (0.8 mm 2 ) to be tested in tension at 0.5 mm/minute immediately or after six months of water storage. For NL, two bonded sticks from each tooth were coated with nail varnish, placed in silver nitrate and polished down with SiC paper. Resin-dentin interfaces
Clinical RelevanceThe addition of CHX digluconate in the acidic conditioner may be an excellent tool to increase the stability of collagen fibrils within the hybrid layer against host-derived metaloproteinases without the need for additional steps for the bonding protocol.
482Operative Dentistry were analyzed by EDX-SEM. The BS and NL data from each adhesive was submitted to two-way repeated measures ANOVA and Tukey's test (α α=0.05). After six months of water storage, significant reductions in BS were observed for both adhesives in the control group (p<0.05). When Ac/CHX or CHX was used, no significant reductions in BS were observed for both systems. Nanoleakage was more evident in the control group than in the experimental groups (p<0.05), even after six months. The use of CHX in an aqueous solution or associated with the acid conditioner was effective for reducing degradation of resin-dentin bonds after six months of water storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.