Abstract. The aim of this paper is to introduce a method for computing rigorous lower bounds for topological entropy. The topological entropy of a dynamical system measures the number of trajectories that separate in finite time and quantifies the complexity of the system. Our method relies on extending existing computational Conley index techniques for constructing semi-conjugate symbolic dynamical systems. Besides offering a description of the dynamics, the constructed symbol system allows for the computation of a lower bound for the topological entropy of the original system. Our overall goal is to construct symbolic dynamics that yield a high lower bound for entropy. The method described in this paper is algorithmic and, although it is computational, yields mathematically rigorous results. For illustration, we apply the method to the Hénon map, where we compute a rigorous lower bound for topological entropy of 0.4320.
We propose a general framework for constructing and describing infinite type flat surfaces of finite area. Using this method, we characterize the range of dynamical behaviors possible for the vertical translation flows on such flat surfaces. We prove a sufficient condition for ergodicity of this flow and apply the condition to several examples. We present specific examples of infinite type flat surfaces on which the translation flow exhibits dynamical phenomena not realizable by translation flows on finite type flat surfaces.
We prove some ergodic theorems for flat surfaces of finite area. The first result concerns such surfaces whose Teichmüller orbits are recurrent to a compact set of SL(2, R)/SL(S, α), where SL(S, α) is the Veech group of the surface. In this setting, this means that the translation flow on a flat surface can be renormalized through its Veech group. This result applies in particular to flat surfaces of infinite genus and finite area. Our second result is an criterion for ergodicity based on the control of deforming metric of a flat surface. Applied to translation flows on compact surfaces, it improves and generalizes a theorem of Cheung and Eskin [CE07].
Abstract. We study the growth of norms of ergodic integrals for the translation action on spaces coming from expansive, self-affine Delone sets. The linear map giving the self-affinity induces a renormalization map on the pattern space and we show that the rate of growth of ergodic integrals is controlled by the induced action of the renormalizing map on the cohomology of the pattern space up to boundary errors. We explore the consequences for the diffraction of such Delone sets, and explore in detail what the picture is for substitution tilings as well as for cut and project sets which are self-affine. We also explicitly compute some examples.
We present new methods of automating the construction of index pairs, essential ingredients of discrete Conley index theory. These new algorithms are further steps in the direction of automating computer-assisted proofs of semi-conjugacies from a map on a manifold to a subshift of finite type. We apply these new algorithms to the standard map at different values of the perturbative parameter ε and obtain rigorous lower bounds for its topological entropy for ε ∈ [.7, 2].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.