The use of bacteriophages has been proposed as an alternative method to control pathogenic bacteria. During recent years several reports have been published about the successful use of bacteriophages in different fields such as food safety, agriculture, aquaculture, and even human health. Several companies are now commercializing bacteriophages or bacteriophage-based products for therapeutic purposes. However, this technology is still in development and there are challenges to overcome before bacteriophages can be widely used to control pathogenic bacteria. One big hurdle is the development of efficient methods for bacteriophage production. To date, several models for bacteriophage production have been reported, some of them evaluated experimentally. This mini-review offers an overview of different models and methods for bacteriophage production, contrasting their principal differences.
The identification of archaeological amber has been used in Iberian prehistory to evidence long-distance exchanges and engage Iberia in networks that connect western Europe with central and northern Europe, the emergence of social complexity, and the consolidation of trade networks. However, until now, no comprehensive analytical study of the Iberian amber has been produced to support any of the interpretive models currently in use. This paper approaches the analysis of Iberian Peninsula amber artefacts by considering their provenance (based on FTIR characterization), chronology, and spatial relationship with other exotica. Our work increases the number of analyzed artefacts to 156 (24%), out of the c. 647 currently known for the Iberian Peninsula. Based on these new data and a review of Murillo-Barroso and Martinón-Torres (2012), this overview outlines amber consumption patterns from the 6th to 2nd millennia BCE and demonstrates long-distance amber exchange connecting Iberia with the Mediterranean region from the Neolithic period onwards.
Keywords: Technology transfer Renewable energy Developing countriesThis paper contributes to the debate about climate change technology transfer by analysing barriers and enablers for a Chilean company starting up the production of wind blades. Literature on the role of technology transfer for the development and deployment of local renewable energy technologies in developing countries often refers to success stories in Brazil, India and China. Instead, this case study highlights the different challenges faced by smaller emerging economies. The paper argues that successful technology transfer in a smaller economy like Chile requires: a minimum internal demand and access to regional markets to attract foreign knowledge providers; a focus in the types of technologies where the recipient country or company have a competitive advantage; and active learning processes by the recipient company. Lessons are drawn for improving the design and implementation of technology-push and market-pull policies in small or medium emerging economies.
AMS radiocarbon and OSL dating, and profiling were used to directly delimit periods of variscite production at Pico Centeno Mine 2. These results were integrated with analysis of other well-dated periods of variscite production to establish an Iberian-wide chronological framework. Variscite production at Pico Centeno Mine 2 began at ~ 5200 BC, coincident with alpine jade production or Casa Montero Iberian flint production. Variscite was only used occasionally, together with other greenstones, during the 5th and 6th millennia BC. During the 4th millennium BC, variscite use began to increase to its apogee in the first half of 3rd millennium BC when it appeared in nearly every Iberian burial site. This increase in variscite production and use coincided with decline in the popularity of alpine jade. By the end of the 3rd millennium BC, new resources began to be valued such as Asian and African Ivory, Baltic and Sicilian amber, and copper-based metal products. The variscite cycle thus started with the decline of jade in the 5th–4th millennium BC, and ended with the appearance of copper, ivory and extra-peninsular amber by the end of the 3rd millennium BC.
Beads and pendants from the Castillejo del Bonete (Terrinches, Ciudad Real) and Cerro Ortega (Villanueva de la Fuente, Ciudad Real) burials were analysed using XRD, micro-Raman and XRF in order to contribute to the current distribution map of green bead body ornament pieces on the Iberian Peninsula which, so far, remain undetailed for many regions. XRD, micro-Raman and XRF analyses showed that most of the beads from Castillejo del Bonete (Late 3rd millennium cal. BC) were made from variscite or green phyllosilicates, while Cerro Ortega's (Late 4th millennium cal. BC) beads were made out of fossil wood or Clinochlore. Significantly enough, while XRD pointed to variscite as the main crystallo-graphic phase, the elemental composition did not match any elemental compositions of known and characterised sources, thus suggesting an unknown south-eastern source or an extra-peninsular origin of these ornamental pieces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.