This systematic review aims to (i) evaluate functional near infrared spectroscopy (fNIRS) walking study design in young adults, older adults and people with Parkinson's disease (PD); (ii) examine signal processing techniques to reduce artefacts and physiological noise in fNIRS data; and (iii) provide evidence-based recommendations for fNIRS walking study design and signal analysis techniques. An electronic search was undertaken. The search request detailed the measurement technique, cohort and walking task. Thirty-one of an initial yield of 73 studies satisfied the criteria. Protocols and methods for removing artefacts and noise varied. Differences in fNIRS signals between studies were found in rest vs. walking, speed of walking, usual vs. complex walking and easy vs. difficult tasks. In conclusion, there are considerable technical and methodological challenges in conducting fNIRS studies during walking which can introduce inconsistencies in study findings. We provide recommendations for the construction of robust methodologies and suggest signal processing techniques implementing a theoretical framework accounting for the physiology of haemodynamic responses.
An emerging body of literature has examined cortical activity during walking and balance tasks in older adults and in people with Parkinson's disease, specifically using functional near infrared spectroscopy (fNIRS) or electroencephalography (EEG). This review provides an overview of this developing area, and examines the disease-specific mechanisms underlying walking or balance deficits. Medline, PubMed, PsychInfo and Scopus databases were searched. Articles that described cortical activity during walking and balance tasks in older adults and in those with PD were screened by the reviewers. Thirty-seven full-text articles were included for review, following an initial yield of 566 studies. This review summarizes study findings, where increased cortical activity appears to be required for older adults and further for participants with PD to perform walking and balance tasks, but specific activation patterns vary with the demands of the particular task. Studies attributed cortical activation to compensatory mechanisms for underlying age- or PD-related deficits in automatic movement control. However, a lack of standardization within the reviewed studies was evident from the wide range of study protocols, instruments, regions of interest, outcomes and interpretation of outcomes that were reported. Unstandardized data collection, processing and reporting limited the clinical relevance and interpretation of study findings. Future work to standardize approaches to the measurement of cortical activity during walking and balance tasks in older adults and people with PD with fNIRS and EEG systems is needed, which will allow direct comparison of results and ensure robust data collection/reporting. Based on the reviewed articles we provide clinical and future research recommendations.
Background: Functional near-infrared spectroscopy (fNIRS) is increasingly used in the field of posture and gait to investigate patterns of cortical brain activation while people move freely. fNIRS methods, analysis and reporting of data vary greatly across studies which in turn can limit the replication of research, interpretation of findings and comparison across works.Research question and methods: Considering these issues, we propose a set of practical recommendations for the conduct and reporting of fNIRS studies in posture and gait, acknowledging specific challenges related to clinical groups with posture and gait disorders.Results: Our paper is organized around three main sections: 1) hardware set up and study protocols, 2) artefact removal and data processing and, 3) outcome measures, validity and reliability; it is supplemented with a detailed checklist. Significance: This paper was written by a core group of members of the International Society for Posture and Gait Research and posture and gait researchers, all experienced in fNIRS research, with the intent of assisting the research community to lead innovative and impactful fNIRS studies in the field of posture and gait, whilst ensuring standardization of research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.