This systematic review aims to (i) evaluate functional near infrared spectroscopy (fNIRS) walking study design in young adults, older adults and people with Parkinson's disease (PD); (ii) examine signal processing techniques to reduce artefacts and physiological noise in fNIRS data; and (iii) provide evidence-based recommendations for fNIRS walking study design and signal analysis techniques. An electronic search was undertaken. The search request detailed the measurement technique, cohort and walking task. Thirty-one of an initial yield of 73 studies satisfied the criteria. Protocols and methods for removing artefacts and noise varied. Differences in fNIRS signals between studies were found in rest vs. walking, speed of walking, usual vs. complex walking and easy vs. difficult tasks. In conclusion, there are considerable technical and methodological challenges in conducting fNIRS studies during walking which can introduce inconsistencies in study findings. We provide recommendations for the construction of robust methodologies and suggest signal processing techniques implementing a theoretical framework accounting for the physiology of haemodynamic responses.
An emerging body of literature has examined cortical activity during walking and balance tasks in older adults and in people with Parkinson's disease, specifically using functional near infrared spectroscopy (fNIRS) or electroencephalography (EEG). This review provides an overview of this developing area, and examines the disease-specific mechanisms underlying walking or balance deficits. Medline, PubMed, PsychInfo and Scopus databases were searched. Articles that described cortical activity during walking and balance tasks in older adults and in those with PD were screened by the reviewers. Thirty-seven full-text articles were included for review, following an initial yield of 566 studies. This review summarizes study findings, where increased cortical activity appears to be required for older adults and further for participants with PD to perform walking and balance tasks, but specific activation patterns vary with the demands of the particular task. Studies attributed cortical activation to compensatory mechanisms for underlying age- or PD-related deficits in automatic movement control. However, a lack of standardization within the reviewed studies was evident from the wide range of study protocols, instruments, regions of interest, outcomes and interpretation of outcomes that were reported. Unstandardized data collection, processing and reporting limited the clinical relevance and interpretation of study findings. Future work to standardize approaches to the measurement of cortical activity during walking and balance tasks in older adults and people with PD with fNIRS and EEG systems is needed, which will allow direct comparison of results and ensure robust data collection/reporting. Based on the reviewed articles we provide clinical and future research recommendations.
Turning impairments are common in Parkinson’s disease (PD) and can elicit freezing of gait (FoG). Extensive examination of open-loop cueing interventions has demonstrated that they can ameliorate gait deficits in PD; less is known about efficacy to improve turning. Here, we investigate the immediate effectiveness of open- and closed-loop cueing in improving turning characteristics in people with PD. Twenty-five subjects with and 18 subjects without FoG participated in the study. Subjects turned in place for one minute under single- and dual-task for 3 randomized conditions: (i) Baseline; (ii) Turning to the beat of a metronome (open-loop); and (iii) Turning with phase-dependent tactile biofeedback (closed-loop). Objective measures of freezing, such as % time spent freezing and FoG-ratio, significantly improved when turning with both open-loop and closed-loop cueing compared to baseline. Dual-tasking did not worsen FoG in freezers, but significantly slowed down turns in both groups. Both cueing modalities significantly improved turning smoothness in both groups, but reduced turning velocity and number of turns compared to baseline. Both open and closed-loop cueing markedly improved turning in people with PD. These preliminary observations warrant further exploration of vibrotactile closed-loop cueing to improve mobility in everyday life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.