Connectivity levels among Brazilian reef fish fauna populations have attracted growing interest, mainly between mainland shores and oceanic islands. The Pomacentridae, whose phylogeographic patterns are largely unknown in the Atlantic, are a family of dominant fish in reef regions. We present data on the variability and population structure of damselfish Chromis multilineata in different areas along the northeast coast of Brazil and in the waters around the oceanic islands of Fernando de Noronha (FNA) and Saint Peter and Saint Paul Archipelago (SPSPA) through analysis of the HVR1 mtDNA sequence of the control region. The remote SPSPA exhibits the highest level of genetic divergence among populations. Conventional and molecular cytogenetic analysis showed similar karyotype patterns (2n = 48 acrocentrics) between these insular areas. Our estimates reveal three genetically different population groups of C. multilineata on the Brazilian coast. The level of genetic structure is higher than previous data suggested, indicating complex panel of interactions between the oceanic island and coastal populations of Brazil.
Wrasses (Labridae) are extremely diversified marine fishes, whose species exhibit complex interactions with the reef environment. They are widely distributed in the Indian, Pacific and Atlantic oceans. Their species have displayed a number of karyotypic divergent processes, including chromosomal regions with complex structural organization. Current cytogenetic information for this family is phylogenetically and geographically limited and mainly based on conventional cytogenetic techniques. Here, the distribution patterns of heterochromatin, GC-specific chromosome regions and Ag-NORs, and the organization of 18S and 5S rDNA sites of the Atlantic species Thalassoma
noronhanum (Boulenger, 1890), Halichoeres
poeyi (Steindachner, 1867), Halichoeres
radiatus (Linnaeus, 1758), Halichoeres
brasiliensis (Bloch, 1791) and Halichoeres
penrosei Starks, 1913, belonging to the tribe Julidini were analyzed. All the species exhibited 2n=48 chromosomes with variation in the number of chromosome arms among genera. Thalassoma
noronhanum has 2m+46a, while species of the genus Halichoeres Rüppell, 1835 share karyotypes with 48 acrocentric chromosomes. The Halichoeres species exhibit differences in the heterochromatin distribution patterns and in the number and distribution of 18S and 5S rDNA sites. The occurrence of 18S/5S rDNA syntenic arrangements in all the species indicates a functionally stable and adaptive genomic organization. The phylogenetic sharing of this rDNA organization highlights a marked and unusual chromosomal singularity inside the family Labridae.
Centropomus is the sole genus of the Centropomidae family (Teleostei), comprising 12 species widely distributed throughout the Western Atlantic and Eastern Pacific, with 6 of them occurring in the Western Atlantic in extensive sympatry. Their life history and phylogenetic relationships are well characterized; however, aspects of chromosomal evolution are still unknown. Here, cytogenetic analyses of 2 Centropomus species of great economic value (C. undecimalis and C. mexicanus) were performed using conventional (Giemsa, Ag-NOR, and fluorochrome staining, C- and replication banding) and molecular (chromosomal mapping of 18S and 5S rDNA, H2A-H2B and H3 hisDNA, and (TTAGGG)n repeats) approaches. The karyotypes of both species were composed of 48 solely acrocentric chromosomes (2n = 48; FN = 48), but the single ribosomal site was located in varying positions in the long arms of the second largest chromosome pair. Replication bands were generally similar, although conspicuous differences were observed in some chromosome regions. In both species, the histone H3 genes were located on 3 apparently homeologous chromosome pairs, but the exact position of these clusters differed slightly. Interspecific hisDNA and rDNA site displacements can indicate the occurrence of multiple paracentric inversions during the evolutionary diversification of the Centropomus genomes. Although the karyotypes remained similar in both species, our data demonstrate an unsuspected microstructural reorganization between them, driven most likely by a series of paracentric inversions.
The taxonomic status of Pomacentridae species can be difficult to determine, due to the high diversity, and in some cases, poorly understood characters, such as color patterns. Although Stegastes rocasensis, endemic to the Rocas atoll and Fernando de Noronha archipelago, and S. sanctipauli, endemic to the São Pedro and São Paulo archipelago, differ in color pattern, they exhibit similar morphological characters and largely overlapping counts of fin rays and lateral-line scales. Another nominal insular species, S. trindadensis, has recently been synonymized with S. fuscus but retained as a valid subspecies by some authors. Counts and morphometric analyses and mitochondrial DNA (COI, 16SrRNA, CytB) and nuclear DNA (rag1 and rhodopsin) comparisons of three insular species (S. rocasensis, S. sanctipauli and S. trindadensis) and three other South Atlantic species (S. fuscus, S. variabilis and S. pictus) were carried out in the present study. Analyses of the principal components obtained by traditional multivariate morphometry indicate that the species in general have similar body morphology. Molecular analyses revealed conspicuous similarity between S. rocasensis and S. sanctipauli and between S. trindadensis and S. fuscus and a clear divergence between S. variabilis from Northeast Brazil and S. variabilis from the Caribbean region. Our data suggest that S. sanctipauli is a synonym of S. rocasensis, support the synonymy of S. trindadensis with S. fuscus, and reveal the presence of a likely cryptic species in the Caribbean that has been confused historically with S. variabilis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.