Neste artigo são realizadas análises estáticas por meio do Método dos Elementos Finitos de estruturas do tipo treliça com comportamento não linear físico. Os algoritmos e as formulações de dois modelos constitutivos inelásticos uniaxiais são apresentados: um baseado na teoria da Elastoplasticidade e o outro na Mecânica do Dano. A solução do problema não linear que descreve o sistema estrutural é obtida com o procedimento incremental-iterativo de Newton-Raphson associado à técnica de continuação Comprimento de Arco Linear. Assume-se a condição de rotações e deslocamentos infinitesimalmente pequenos. Para verificar a precisão e convergência dos algoritmos implementados no programa Matlab, além de comparar as respostas numéricas dos modelos constitutivos, as trajetórias de equilíbrio das estruturas são obtidas. Em adição, as treliças são submetidas a ciclos de carregamento e descarregamento.
This paper presents a new algorithm to solve the system of nonlinear equations that describes the static equilibrium of trusses with material and geometric nonlinearities, adapting a three-step method with fourth-order convergence found in the literature. The co-rotational formulation of the Finite Element Method is used in the discretization of structures. The nonlinear behavior of the material is characterized by an elastoplastic constitutive model. The equilibrium paths with limit points of load and displacement are obtained using the linearized Arc-Length path-following technique. The numerical results obtained with the free program Scilab show that the new algorithm converges faster than standard procedures and modified Newton-Raphson, since the approximate solution of the problem is obtained with a smaller number of accumulated iterations and less CPU time. The equilibrium paths show that the structures exhibit a completely different behavior when the material nonlinearity is considered in the analysis with large displacements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.