When a Web user's underlying information need is not clearly specified from the initial query, an effective approach is to diversify the results retrieved for this query. In this paper, we introduce a novel probabilistic framework for Web search result diversification, which explicitly accounts for the various aspects associated to an underspecified query. In particular, we diversify a document ranking by estimating how well a given document satisfies each uncovered aspect and the extent to which different aspects are satisfied by the ranking as a whole. We thoroughly evaluate our framework in the context of the diversity task of the TREC 2009 Web track. Moreover, we exploit query reformulations provided by three major Web search engines (WSEs) as a means to uncover different query aspects. The results attest the effectiveness of our framework when compared to state-of-the-art diversification approaches in the literature. Additionally, by simulating an upper-bound query reformulation mechanism from official TREC data, we draw useful insights regarding the effectiveness of the query reformulations generated by the different WSEs in promoting diversity.
Search result diversification has gained momentum as a way to tackle ambiguous queries. An effective approach to this problem is to explicitly model the possible aspects underlying a query, in order to maximise the estimated relevance of the retrieved documents with respect to the different aspects. However, such aspects themselves may represent information needs with rather distinct intents (e.g., informational or navigational). Hence, a diverse ranking could benefit from applying intent-aware retrieval models when estimating the relevance of documents to different aspects. In this paper, we propose to diversify the results retrieved for a given query, by learning the appropriateness of different retrieval models for each of the aspects underlying this query. Thorough experiments within the evaluation framework provided by the diversity task of the TREC 2009 and 2010 Web tracks show that the proposed approach can significantly improve state-of-the-art diversification approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.