The conditional fluorescent ( flu ) mutant of Arabidopsis accumulates the photosensitizer protochlorophyllide in the dark. After a dark-to-light shift, the generation of singlet oxygen, a nonradical reactive oxygen species, starts within the first minute of illumination and was shown to be confined to plastids. Immediately after the shift, plants stopped growing and developed necrotic lesions. These early stress responses of the flu mutant do not seem to result merely from physicochemical damage. Peroxidation of chloroplast membrane lipids in these plants started rapidly and led to the transient and selective accumulation of a stereospecific and regiospecific isomer of hydroxyoctadecatrieonic acid, free (13 S )-HOTE, that could be attributed almost exclusively to the enzymatic oxidation of linolenic acid. Within the first 15 min of reillumination, distinct sets of genes were activated that were different from those induced by superoxide/hydrogen peroxide. Collectively, these results demonstrate that singlet oxygen does not act primarily as a toxin but rather as a signal that activates several stress-response pathways. Its biological activity in Arabidopsis exhibits a high degree of specificity that seems to be derived from the chemical identity of this reactive oxygen species and/or the intracellular location at which it is generated.
SummaryUpon a dark/light shift the conditional flu mutant of Arabidopsis starts to generate singlet oxygen ( 1 O 2 ), a nonradical reactive oxygen species that is restricted to the plastid compartment. Immediately after the shift, plants stop growing and develop necrotic lesions. We have established a protoplast system, which allows detection and characterization of the death response in flu induced by the release of 1 O 2 . Vitamin B6 that quenches 1 O 2 in fungi was able to protect flu protoplasts from cell death. Blocking ethylene production was sufficient to partially inhibit the death reaction. Similarly, flu mutant seedlings expressing transgenic NahG were partially protected from the death provoked by the release of 1 O 2 , indicating a requirement for salicylic acid (SA) in this process, whereas in cells depleted of both, ethylene and SA, the extent of cell death was reduced to the wildtype level. The flu mutant was also crossed with the jasmonic acid (JA)-depleted mutant opr3, and with the JA, OPDA and dinor OPDA (dnOPDA)-depleted dde2-2 mutant. Analysis of the resulting double mutants revealed that in contrast to the JA-induced suppression of H 2 O 2 /superoxide-dependent cell death reported earlier, JA promotes singlet oxygen-mediated cell death in flu, whereas other oxylipins such as OPDA and dnOPDA antagonize this death-inducing activity of JA.
Eukaryotic translation initiation factor eIF-4A is a member of the DEAD box family of RNA helicases and RNA-dependent ATPases. In tobacco, eIF-4A is encoded by a gene family with one isoform, eIF-4A8, being exclusively expressed in pollen. This pollen-specific isoform is a candidate for mediating translational control in the developing gametophyte. Here we show that eIF-4A is barely phosphorylated in mature pollen, but during pollen tube germination, two isoforms of eIF-4A become phosphorylated. Phosphoamino acid analysis indicated phosphorylation of threonine. In order to determine whether pollen-specific eIF-4A8 is among the phosphorylated isoforms, we raised transgenic tobacco plants overexpressing eIF-4A8 containing a histidine tag. Hereby, we could show that indeed eIF-4A8 is modified through phosphorylation. The biological relevance of the phosphorylation of eIF-4A is discussed.
Acetaldehyde is one of the intermediate products of ethanolic fermentation, which can be reduced to ethanol by alcohol dehydrogenase (ADH). Alternatively, acetaldehyde can be oxidized to acetate by aldehyde dehydrogenase (ALDH) and subsequently converted to acetyl-CoA by acetyl-CoA synthetase (ACS). To study the expression of ALDHs in plants we isolated and characterized a cDNA coding for a putative mitochondrial ALDH (TobAldh2A) in Nicotiana tabacum. TobALDH2A shows 54-60% identity at the amino acid level with other ALDHs and shows 76% identity with maize Rf2, a gene involved in restoration of male fertility in cms-T maize. TobAldh2A transcripts and protein were present at high levels in the male and female reproductive tissues. Expression in vegetative tissues was much lower and no induction by anaerobic incubation was observed. This suggests that TobALDH expression is not part of the anaerobic response, but may have another function. The use of specific inhibitors of ALDH and the pyruvate dehydrogenase (PDH) complex indicates that ALDH activity is important for pollen tube growth, and thus may have a function in biosynthesis or energy production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.