The prediction of vessel maritime navigation has become an exciting topic in the last years, especially considering economics, commercial exchange, and security. In addition, vessel monitoring requires better systems and techniques that help enterprises and governments to protect their interests. Specifically, the prediction of vessel movements is essential for safety and tracking. However, the applications of prediction techniques have a high cost related to computational efficiency and low resource saving. This article presents a sample method to select historical data on vessel-specific routes to optimize the computational performance of the prediction of vessel positions and route estimation in real-time. These historical navigation data can help to estimate a complete path and perform vessel position predictions through time. This Select Best AIS Data in Prediction Vessel Movements and Route Estimation (PreMovEst) method works in a Vessel Traffic Service database to save computational resources when predictions or route estimations are executed. This article discusses AIS data and the artificial neural network. This work aims to present a prediction model that correctly predicts the physical movement in the route. It supports path planning for the Vessel Traffic Service. After testing the method, the results obtained for route estimation have a precision of 76.15%, and those for vessel position predictions through time have an accuracy of 81.043%.
En la actualidad existen varias ciudades afectadas con altos índices de contaminación, debido a varias cosas entre ellas, el crecimiento vehicular, empresas que arrojan contaminantes a la intemperie debido a sus procesos industriales, basura e incendios forestales, entre otras. En este artículo se presenta la propuesta de un sistema en tiempo real que puede estar monitoreando variables ambientales en varios puntos de la ciudad y hacer una predicción del comportamiento de dichas variables. Los datos provienen de datos proporcionados por el Sistema Estatal de Información de Calidad del Aire (SEICA) en el estado de Guanajuato. Se aplican técnicas de rellenado de datos para completar los valores perdidos, se realiza el etiquetado de la calidad del aire de acuerdo al semáforo proporcionado por el SEICA y, se realiza una transformación a la base de datos para el entrenamiento de la red neuronal que se utiliza para la predicción de la calidad del aire. Los datos adquiridos se normalizan, se agrupan, y con ellos se estructuran los componentes de predicción, y se hace también el análisis estadístico y de estructura.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.