A joint AOAC/American Association of Cereal Chemists (AACC) collaborative study was conducted to determine by the Uppsala method the dietary fiber content and its composition in various foods. The method includes preparation of a residue by treatment with thermostable α-amylase and amyloglucosidase and then ethanol precipitation of solubilized dietary fiber components while leaving low-molecular weight carbohydrates in solution. After acid hydrolysis of residue, neutral polysaccharide residues are determined as alditol acetates by gas-liquid chromatography, uronic acid residues are determined by colorimetry, and ash-free acid-insoluble residue (Klason lignin) is determined gravimetrically. Total dietary fiber, including enzyme-resistant starch, is calculated as the sum of nonstarch polysaccharide residues and Klason lignin. Nine laboratories completed the study, analyzing in duplicate 8 unknown dried products that included 4 cereal products, green peas, potato fiber, carrots, and apples. Total dietary fiber contents of products tested ranged from 4.6 to 84.3%, with an average RSDR value of 8.4% (range, 4.8–11.1%). Total neutral polysaccharide residues ranged from 3.8 to 64.1%, with an average RSDR value of 7.5% (range, 5.4–10.5%). Individual neutral sugars (rhamnose, arabinose, xylose, mannose, galactose, and glucose) and uronic acid residues present at more than 1% generally had good RSDR values (3.3– 22.8%), whereas, as expected for Klason lignin, only the wheat bran sample with a high content (16%) had an excellent RSDR value (5.0%). The gas chromatographic-colorimetric-gravimetric method (Uppsala method) for determination of total dietary fiber (as neutral sugar residues, uronic acid residues, and Klason lignin) has been adopted first action by AOAC INTERNATIONAL.
A repeatable procedure for studying the effects of internal and external factors on acrylamide content in yeast-leavened wheat bread has been developed. The dough contained wheat endosperm flour with a low content of precursors for acrylamide formation (asparagine and reducing sugars), dry yeast, salt, and water. The effects of asparagine and fructose, added to the dough, were studied in an experiment with a full factorial design. More than 99% of the acrylamide was found in the crust. Added asparagine dramatically increased the content of acrylamide in crusts dry matter (from about 80 microg/kg to between 600 and 6000 microg/kg) while added fructose did not influence the content. The effects of temperature and time of baking were studied in another experiment using a circumscribed central composite design. Mainly temperature (above 200 degrees C) but also time increased the acrylamide content in crust dry matter (from below 10 to 1900 microg/kg), and a significant interaction was found between these two factors. When baked at different conditions with the same ingredients, a highly significant relationship (P < 0.001) between color and acrylamide content in crust was found. Added asparagine, however, did not increase color, showing that mainly other amino compounds are involved in the browning reactions.
The main biochemical function of the tocopherols is believed to be the protection of polyunsaturated fatty acids (PUFA) against peroxidation. A critical question that must be asked in reference to this is whether there is a biochemical link between the tocopherol levels and the degree of unsaturation in vegetable oils, the main source of dietary PUFA and vitamin E. We used a mathematical approach in an effort to highlight some facts that might help address this question. Literature data on the relative composition of fatty acids (16:0, 16:1, 18:0, 18:1, 18:2, and 18:3) and the contents of tocopherols (α-, β-, δ-, and γ-tocopherol) in 101 oil samples, including 14 different botanical species, were analyzed by principal-component analysis and linear regression. There was a negative correlation between α-and γ-tocopherols (r = 0.633, P < 0.05). Results also showed a positive correlation between linoleic acid (18:2) and α-tocopherol (r = 0.549, P < 0.05) and suggested a positive correlation between linolenic acid (18:3) and γ-tocopherol. JAOCS 74, 375-380 (1997).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.