Therapeutic interventions have not yet been shown to demonstrate restorative effects for declining long-term memory (LTM) that affects many healthy older adults. We developed a virtual reality (VR) spatial wayfinding game (Labyrinth-VR) as a cognitive intervention with the hypothesis that it could improve detailed, high-fidelity LTM capability. Spatial navigation tasks have been used as a means to achieve environmental enrichment via exposure to and learning about novel and complex information. Engagement has been shown to enhance learning and has been linked to the vitality of the LTM system in the brain. In the current study, 48 older adults (mean age 68.7 ± 6.4 years) with average cognitive abilities for their age were randomly assigned to 12 h of computer game play over four weeks in either the Labyrinth-VR or placebo control game arms. Promptly before and after each participant’s treatment regimen, high-fidelity LTM outcome measures were tested to assess mnemonic discrimination and other memory measures. The results showed a post-treatment gain in high-fidelity LTM capability for the Labyrinth-VR arm, relative to placebo, which reached the levels attained by younger adults in another experiment. This novel finding demonstrates generalization of benefits from the VR wayfinding game to important, and untrained, LTM capabilities. These cognitive results are discussed in the light of relevant research for hippocampal-dependent memory functions.
Preserving attention abilities is of great concern to older adults who are motivated to maintain their quality of life. Both cognitive and physical fitness interventions have been utilized in intervention studies to assess maintenance and enhancement of attention abilities in seniors, and a coupling of these approaches is a compelling strategy to buttress both cognitive and physical health in a time- and resource-effective manner. With this perspective, we created a closed-loop, motion-capture video game (Body-Brain Trainer: BBT) that adapts a player’s cognitive and physical demands in an integrated approach, thus creating a personalized and cohesive experience across both domains. Older adults who engaged in two months of BBT improved on both physical fitness (measures of blood pressure and balance) and attention (behavioral and neural metrics of attention on a continuous performance task) outcome measures beyond that of an expectancy matched, active, placebo control group, with maintenance of improved attention performance evidenced 1 year later. Following training, the BBT group’s improvement on the attention outcome measure exceeded performance levels attained by an untrained group of 20-year olds, and showed age-equilibration of a neural signature of attention shown to decline with age: midline frontal theta power. These findings highlight the potential benefits of an integrated, cognitive-physical, closed-loop training platform as a powerful tool for both cognitive and physical enhancement in older adults.
Inattention can negatively impact several aspects of a child’s life, including at home and school. Cognitive and physical interventions are two promising non-pharmaceutical approaches used to enhance attention abilities, with combined approaches often being marketed to teachers, therapists, and parents typically without research validation. Here, we assessed the feasibility of incorporating an integrated, cognitive-physical, closed-loop video game (body-brain trainer or ‘BBT’) as an after-school program, and also evaluated if there were attention benefits following its use. Twenty-two children (7–12 years of age) with a range of attention abilities were recruited to participate in this proof of concept, single-arm, longitudinal study (24 sessions over 8 weeks, ~30 min/day). We interrogated attention abilities through a parent survey of their child’s behaviors, in addition to objective performance-based and neural measures of attention. Here we observed 95% compliance as well as, significant improvements on the parent-based reports of inattention and on cognitive tests and neural measures of attention that were comparable in scale to previous work. Exploratory measures of other cognitive control abilities and physical fitness also showed similar improvement, with exploratory evaluation of retained benefits on the primary attention-related outcomes being present 1-year later. Lastly, there was no correlation between the baseline parent-rated inattention score and the improvement on the primary task-based measures of attention, suggesting that intervention-based benefits were not solely attained by those who stood the most to gain. These pilot findings warrant future research to replicate and extend these findings.
Standardized neuropsychological assessments of older adults are important for both clinical diagnosis and biobehavioral research. Over decades, in-person testing has been the basis for population normative values that rank cognitive performance by demographic status. Most recently, digital tools have enabled remote data collection for cognitive measures, which offers the significant promise to extend the basis for normative values to be more inclusive of a larger cross section of the older population. We developed a Remote Characterization Module (RCM), using a speech-to-text interface, as a novel digital tool to administer an at-home, 25-min cognitive screener that mimics eight standardized neuropsychological measures. Forty cognitively healthy participants were recruited from a longitudinal aging research cohort, and they performed the same measures of memory, attention, verbal fluency and set-shifting in both in-clinic paper-and-pencil (PAP) and at-home RCM versions. The results showed small differences, if any, for how participants performed on in-person and remote versions in five of eight tasks. Critically, robust correlations between their PAP and RCM scores across participants support the finding that remote, digital testing can provide a reliable assessment tool for rapid and remote screening of healthy older adults’ cognitive performance in several key domains. The implications for digital cognitive screeners are discussed.
Preserving attention abilities is of great concern to older adults who are motivated to maintain their quality of life as they age. Both cognitive and physical fitness interventions have been utilized in intervention studies to assess maintenance and enhancement of attention abilities in seniors, and a coupling of these approaches is a compelling strategy to buttress both cognitive and physical health in a time- and resource-effective manner. With this perspective, we created a closed-loop, motion-capture video game (Body-Brain Trainer: BBT) that adapts a player’s cognitive and physical demands in an integrated approach, thus creating a personalized and cohesive experience across both domains. Older adults who engaged in two months of BBT improved on both physical fitness and attention outcome measures beyond that of an expectancy-matched, active, placebo control group, with maintenance of improved attention performance evidenced 1 year later. Following training, the BBT group’s improvement on the attention outcome measure exceeded performance levels attained by an untrained group of 20-year-olds, and showed age-equilibration of a neural signature of attention shown to decline with age: midline frontal theta power. These findings highlight the potential benefits of an integrated, cognitive-physical, closed-loop training platform as a powerful tool for both cognitive and physical enhancement in older adults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.