To maintain constant body temperature (Tb) over a wide range of ambient temperatures (Ta) endothermic animals require large amounts of energy and water. In hot environments, the main threat to endothermic homeotherms is insufficient water to supply that necessary for thermoregulation. We investigated flexible adjustment of traits related to thermoregulation and water conservation during acclimation to hot conditions or restricted water availability, or both, in the zebra finch, Taeniopygia guttata a small arid-zone passerine. Using indirect calorimetry, we measured changes in whole animal metabolic rate (MR), evaporative heat loss (EHL) and Tb before and after acclimation to 23 or 40 °C, with different availability of water. Additionally, we quantified changes in partitioning of EHL into respiratory and cutaneous avenues in birds exposed to 25 and 40 °C. In response to heat and water restriction zebra finches decreased MR, which together with unchanged EHL resulted in increased efficiency of evaporative heat loss. This facilitated more precise Tb regulation in heat-acclimated birds. Acclimation temperature and water availability had no effect on the partitioning of EHL into cutaneous or respiratory avenues. At 25 °C, cutaneous EHL accounted for ~ 60% of total EHL, while at 40 °C, its contribution decreased to ~ 20%. Consistent among-individual differences in MR and EHL suggest that these traits, provided that they are heritable, may be a subject to natural selection. We conclude that phenotypic flexibility in metabolic heat production associated with acclimation to hot, water-scarce conditions is crucial in response to changing environmental conditions, especially in the face of current and predicted climate change.
The polar regions provide valuable insights into the functioning of the Earth’s regulating systems. Conducting field research in such harsh and remote environments requires strong international cooperation, extended planning horizons, sizable budgets and long-term investment. Consequently, polar research is particularly vulnerable to societal and economic pressures during periods of austerity. The global financial crisis of 2008, and the ensuing decade of economic slowdown, have already adversely affected polar research, and the current COVID-19 pandemic has added further pressure. In this article we present the outcomes of a community survey that aimed to assess the main barriers and success factors identified by academic researchers at all career stages in response to these global crises. The survey results indicate that the primary barriers faced by polar early and mid-career researchers (EMCRs) act at institutional level, while mitigating factors are developed at individual and group levels. Later career scientists report pressure toward taking early retirement as a means of institutions saving money, reducing both academic leadership and the often unrecognized but vital mentor roles that many play. Gender and social inequalities are also perceived as important barriers. Reorganization of institutional operations and more effective strategies for long-term capacity building and retaining of talent, along with reduction in non-research duties shouldered by EMCRs, would make important contributions toward ensuring continued vitality and innovation in the polar research community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.