This article analyzes the flows of water and total suspended sediment in different reaches in the lower course of the Negro River, the largest fluvial blackwater system in the world. The area under study is the Anavilhanas Archipelago, which is a complex multichannel reach on the Negro River. Between the years 2016 and 2019, data about water discharge, velocity, and concentration of total suspended solids (TSS) were acquired in sample sections of the Negro River channels located upstream, inside, and downstream of the Anavilhanas Archipelago. In the study area, the Negro River drains an area greater than 700,000 km2, and the mean water discharge observed before the Anavilhanas was about 28.655 m3·s−1, of which 97% flows through two channels of the Archipelago close to the right and left banks. The mean TSS concentration of the Negro River upstream and downstream the Archipelago was 3.28 mg·L−1 and 1.63 mg·L−1, respectively. Within the Archipelago, we observed more TSS in the channel on the left bank of the Negro River (mean of 4.50 mg·L−1). The total suspended sediment discharge of the Negro River before (3.14 Mt·year−1) and after (1.43 Mt·year−1) the Anavilhanas Archipelago indicates a 55% retention of the suspended load due to the low water slope and reduced flow velocity caused by the backwater effect of Solimões River on the Negro River. The hydro-sedimentary scenario of the low course of the Negro River characterized in this study indicates a slow and continuous sedimentation process in the Anavilhanas Archipelago. The results presented will serve as a baseline to assess the impacts of the dams on the Branco River, the main tributary for both water and sediment in the Negro River basin.
Monitoring suspended sediments through remote sensing data in black-water rivers is a challenge. Herein, remote sensing reflectance (Rrs) from in situ measurements and Sentinel-2 Multi-Spectral Instrument (MSI) images were used to estimate the suspended sediment concentration (SSC) in the largest black-water river of the Amazon basin. The Negro River exhibits extremely low Rrs values (< 0.005 sr−1 at visible and near-infrared bands) due to the elevated absorption of coloured dissolved organic matter (aCDOM at 440 nm > 7 m−1) caused by the high amount of dissolved organic carbon (DOC > 7 mg L−1) and low SSC (< 5 mg L−1). Interannual variability of Rrs is primarily controlled by the input of suspended sediments from the Branco River, which is a clear water river that governs the changes in the apparent optical properties of the Negro River, even at distances that are greater than 90 km from its mouth. Better results were obtained using the Sentinel-2 MSI Red band (Band 4 at 665 nm) in order to estimate the SSC, with an R2 value greater than 0.85 and an error less than 20% in the adjusted models. The magnitudes of water reflectance in the Sentinel-2 MSI Red band were consistent with in situ Rrs measurements, indicating the large spatial variability of the lower SSC values (0 to 15 mg L−1) in a complex anabranching reach of the Negro River. The in situ and satellite data analysed in this study indicates sedimentation processes in the lower Negro River near the Amazon River. The results suggest that the radiometric characteristics of sensors, like sentinel-2 MSI, are suitable for monitoring the suspended sediment concentration in large tropical black-water rivers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.