Obligate parasitic plants in the Orobanchaceae germinate after sensing plant hormones, strigolactones, exuded from host roots. In Arabidopsis thaliana, the α/β-hydrolase D14 acts as a strigolactone receptor that controls shoot branching, whereas its ancestral paralog, KAI2, mediates karrikin-specific germination responses. We observed that KAI2, but not D14, is present at higher copy numbers in parasitic species than in nonparasitic relatives. KAI2 paralogs in parasites are distributed into three phylogenetic clades. The fastest-evolving clade, KAI2d, contains the majority of KAI2 paralogs. Homology models predict that the ligand-binding pockets of KAI2d resemble D14. KAI2d transgenes confer strigolactone-specific germination responses to Arabidopsis thaliana. Thus, the KAI2 paralogs D14 and KAI2d underwent convergent evolution of strigolactone recognition, respectively enabling developmental responses to strigolactones in angiosperms and host detection in parasites.
BackgroundStrigolactones (SLs) are a class of plant hormones that control many aspects of plant growth. The SL signalling mechanism is homologous to that of karrikins (KARs), smoke-derived compounds that stimulate seed germination. In angiosperms, the SL receptor is an α/β-hydrolase known as DWARF14 (D14); its close homologue, KARRIKIN INSENSITIVE2 (KAI2), functions as a KAR receptor and likely recognizes an uncharacterized, endogenous signal (‘KL’). Previous phylogenetic analyses have suggested that the KAI2 lineage is ancestral in land plants, and that canonical D14-type SL receptors only arose in seed plants; this is paradoxical, however, as non-vascular plants synthesize and respond to SLs.ResultsWe have used a combination of phylogenetic and structural approaches to re-assess the evolution of the D14/KAI2 family in land plants. We analysed 339 members of the D14/KAI2 family from land plants and charophyte algae. Our phylogenetic analyses show that the divergence between the eu-KAI2 lineage and the DDK (D14/DLK2/KAI2) lineage that includes D14 occurred very early in land plant evolution. We show that eu-KAI2 proteins are highly conserved, and have unique features not found in DDK proteins. Conversely, we show that DDK proteins show considerable sequence and structural variation to each other, and lack clearly definable characteristics. We use homology modelling to show that the earliest members of the DDK lineage structurally resemble KAI2 and that SL receptors in non-seed plants likely do not have D14-like structure. We also show that certain groups of DDK proteins lack the otherwise conserved MORE AXILLARY GROWTH2 (MAX2) interface, and may thus function independently of MAX2, which we show is highly conserved throughout land plant evolution.ConclusionsOur results suggest that D14-like structure is not required for SL perception, and that SL perception has relatively relaxed structural requirements compared to KAI2-mediated signalling. We suggest that SL perception gradually evolved by neo-functionalization within the DDK lineage, and that the transition from KAI2-like to D14-like protein may have been driven by interactions with protein partners, rather than being required for SL perception per se.Electronic supplementary materialThe online version of this article (doi:10.1186/s12915-017-0397-z) contains supplementary material, which is available to authorized users.
We have purified a minimal core human Ino80 complex from recombinant protein expressed in insect cells. The complex comprises one subunit each of an N-terminally truncated Ino80, actin, Arp4, Arp5, Arp8, Ies2 and Ies6, together with a single heterohexamer of the Tip49a and Tip49b proteins. This core complex has nucleosome sliding activity that is similar to that of endogenous human and yeast Ino80 complexes and is also inhibited by inositol hexaphosphate (IP6). We show that IP6 is a non-competitive inhibitor that acts by blocking the stimulatory effect of nucleosomes on the ATPase activity. The IP6 binding site is located within the C-terminal region of the Ino80 subunit. We have also prepared complexes lacking combinations of Ies2 and Arp5/Ies6 subunits that reveal regulation imposed by each of them individually and synergistically that couples ATP hydrolysis to nucleosome sliding. This coupling between Ies2 and Arp5/Ies6 can be overcome in a bypass mutation of the Arp5 subunit that is active in the absence of Ies2. These studies reveal several underlying mechanisms for regulation of ATPase activity involving a complex interplay between these protein subunits and IP6 that in turn controls nucleosome sliding.
A set of PpKAI2 - LIKE paralogs that may encode strigolactone receptors in Physcomitrella patens were identified through evolutionary, structural, and transcriptional analyses, suggesting that strigolactone perception may have evolved independently in basal land plants in a similar manner as spermatophytes. Carotenoid-derived compounds known as strigolactones are a new class of plant hormones that modulate development and interactions with parasitic plants and arbuscular mycorrhizal fungi. The strigolactone receptor protein DWARF14 (D14) belongs to the α/β hydrolase family. D14 is closely related to KARRIKIN INSENSITIVE2 (KAI2), a receptor of smoke-derived germination stimulants called karrikins. Strigolactone and karrikin structures share a butenolide ring that is necessary for bioactivity. Charophyte algae and basal land plants produce strigolactones that influence their development. However phylogenetic studies suggest that D14 is absent from algae, moss, and liverwort genomes, raising the question of how these basal plants perceive strigolactones. Strigolactone perception during seed germination putatively evolved in parasitic plants through gene duplication and neofunctionalization of KAI2 paralogs. The moss Physcomitrella patens shows an increase in KAI2 gene copy number, similar to parasitic plants. In this study we investigated whether P. patens KAI2-LIKE (PpKAI2L) genes may contribute to strigolactone perception. Based on phylogenetic analyses and homology modelling, we predict that a clade of PpKAI2L proteins have enlarged ligand-binding cavities, similar to D14. We observed that some PpKAI2L genes have transcriptional responses to the synthetic strigolactone GR24 racemate or its enantiomers. These responses were influenced by light and dark conditions. Moreover, (+)-GR24 seems to be the active enantiomer that induces the transcriptional responses of PpKAI2L genes. We hypothesize that members of specific PpKAI2L clades are candidate strigolactone receptors in moss.
FANCI:FANCD2 monoubiquitination is a critical event for replication fork stabilization by the Fanconi anemia (FA) DNA repair pathway. It has been proposed that at stalled replication forks, monoubiquitinated-FANCD2 serves to recruit DNA repair proteins that contain ubiquitin-binding motifs. Here, we have reconstituted the FA pathway in vitro to study functional consequences of FANCI:FANCD2 monoubiquitination. We report that monoubiquitination does not promote any specific exogenous protein:protein interactions, but instead stabilizes FANCI:FANCD2 heterodimers on dsDNA. This clamping requires monoubiquitination of only the FANCD2 subunit. We further show using electron microscopy that purified monoubiquitinated FANCI:FANCD2 forms filament-like arrays on long dsDNA. Our results reveal how monoubiquitinated FANCI:FANCD2, defective in many cancer types and all cases of FA, is activated upon DNA binding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.