Matrix-vector multiplication is one of the most fundamental computing primitives. Given a matrix A ∈ F N ×N and a vector b ∈ F N , it is known that in the worst case Θ(N 2 ) operations over F are needed to compute Ab. Many types of structured matrices do admit faster multiplication. However, even given a matrix A that is known to have this property, it is hard in general to recover a representation of A exposing the actual fast multiplication algorithm. Additionally, it is not known in general whether the inverses of such structured matrices can be computed or multiplied quickly. A broad question is thus to identify classes of structured dense matrices that can be represented with O(N ) parameters, and for which matrix-vector multiplication (and ideally other operations such as solvers) can be performed in a sub-quadratic number of operations.One such class of structured matrices that admit nearlinear matrix-vector multiplication are the orthogonal polynomial transforms whose rows correspond to a family of orthogonal polynomials. Other well known classes include the Toeplitz, Hankel, Vandermonde, Cauchy matrices and their extensions (e.g. confluent Cauchy-like matrices) that are all special cases of a low displacement rank property.In this paper, we make progress on two fronts: 1. We introduce the notion of recurrence width of matrices.For matrices A with constant recurrence width, we design algorithms to compute both Ab and A T b with a near-linear number of operations. This notion of width is finer than all the above classes of structured matrices and thus we can compute near-linear matrixvector multiplication for all of them using the same core algorithm. Furthermore, we show that it is possible to solve the harder problems of recovering the structured parameterization of a matrix with low recurrence width, and computing matrix-vector product with its inverse in near-linear time. 2. We additionally adapt our algorithm to a matrix-vector multiplication algorithm for a much more general class of matrices with displacement structure: those with low displacement rank with respect to quasiseparable matrices. This result is a novel connection between matrices with displacement structure and those with rank structure, two large but previously separate classes of structured matrices. This class includes Toeplitzplus-Hankel-like matrices, the Discrete Trigonometric Transforms, and more, and captures all previously known matrices with displacement structure under a unified parameterization and algorithm.Our work unifies, generalizes, and simplifies existing stateof-the-art results in structured matrix-vector multiplication. Finally, we show how applications in areas such as multipoint evaluations of multivariate polynomials can be reduced to problems involving low recurrence width matrices.
We present Ringo, a system for analysis of large graphs. Graphs provide a way to represent and analyze systems of interacting objects (people, proteins, webpages) with edges between the objects denoting interactions (friendships, physical interactions, links). Mining graphs provides valuable insights about individual objects as well as the relationships among them. In building Ringo, we take advantage of the fact that machines with large memory and many cores are widely available and also relatively affordable. This allows us to build an easy-to-use interactive high-performance graph analytics system. Graphs also need to be built from input data, which often resides in the form of relational tables. Thus, Ringo provides rich functionality for manipulating raw input data tables into various kinds of graphs. Furthermore, Ringo also provides over 200 graph analytics functions that can then be applied to constructed graphs. We show that a single big-memory machine provides a very attractive platform for performing analytics on all but the largest graphs as it offers excellent performance and ease of use as compared to alternative approaches. With Ringo, we also demonstrate how to integrate graph analytics with an iterative process of trial-and-error data exploration and rapid experimentation, common in data mining workloads.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.