Summary Allergic asthma is characterized by airway hyperresponsiveness and inflammation and may lead to airway remodeling in uncontrolled cases. Genetic predisposition to an atopic phenotype plays a major component in the pathophysiology of asthma. However, with tremendous role of epigenetic factors and environmental stimuli in precipitating an immune response, the underlying pathophysiological mechanisms are complicated. Dendritic cells are principal antigen presenting cells and initiators of the immune response in allergic asthma. Their phenotype, guided by multiple factors may dictate the immune reaction to an allergic or tolerogenic response. Involvement of the local cytokine milieu, microbiome and interplay between immune cells add dimension to the fate of immune response. In addition to allergen exposure, these factors modulate DC phenotype and function. In this article, integration of many factors and pathways associated with the recruitment and activation of DCs in the pathophysiology of allergic asthma is presented in a clinical and translational manner.
Loss of extracellular superoxide dismutase 3 (SOD3) contributes to inflammatory and fibrotic lung diseases. The human SOD3 R213G polymorphism decreases matrix binding, redistributing SOD3 from the lung to extracellular fluids, and protects against LPS-induced alveolar inflammation. We used R213G mice expressing a naturally occurring single-nucleotide polymorphism, rs1799895, within the heparin-binding domain of SOD3, which results in an amino acid substitution at position 213 to test the hypothesis that the redistribution of SOD3 into the extracellular fluids would impart protection against bleomycin-induced lung fibrosis and secondary pulmonary hypertension (PH). In R213G mice, SOD3 content and activity was increased in extracellular fluids and decreased in lung at baseline, with greater increases in bronchoalveolar lavage fluid (BALF) SOD3 compared with wild-type mice 3 days after bleomycin. R213G mice developed less fibrosis based on pulmonary mechanics, fibrosis scoring, collagen quantification, and gene expression at 21 days, and less PH by right ventricular systolic pressure and pulmonary arteriole medial wall thickening at 28 days. In wild-type mice, macrophages, lymphocytes, neutrophils, proinflammatory cytokines, and protein increased in BALF on Day 7 and/or 21. In R213G mice, total BALF cell counts increased on Day 7 but resolved by 21 days. At 1 or 3 days, BALF pro- and antiinflammatory cytokines and BALF protein were higher in R213G mice, resolving by 21 days. We conclude that the redistribution of SOD3 as a result of the R213G single-nucleotide polymorphism protects mice from bleomycin-induced fibrosis and secondary PH by improved resolution of alveolar inflammation.
No abstract
Although lung diseases typically result from long-term exposures, even a robust, one-time exposure can result in long-lasting consequences. Endotoxin is a ubiquitous environmental/occupational inflammatory agent often used to model airway inflammation. Using a murine model, the return to lung homeostasis following high dose inhalant lipopolysaccharide (LPS, 10–100 μg) exposure were delineated over 2 weeks. LPS-induced rapid weight loss, release of proinflammatory mediators, and inflammatory cell influx with prolonged persistence of activated macrophages CD11c+CD11b+ and recruited/transitioning CD11cintCD11b+ monocyte-macrophages out to 2 weeks. Next, lung-delivered recombinant (r) interleukin (IL)-10 was intratracheally administered for 3 doses initiated 5 h following LPS (10 μg) exposure for 2 days. IL-10 therapy reduced LPS-induced weight loss and increased blood glucose levels. Whereas there was no difference in LPS-induced bronchoalveolar lavage airway fluid cellular influx, total lung cell infiltrates were reduced (37%) with rIL-10 treatment. Post-LPS exposure treatment with rIL-10 strikingly reduced lavage fluid and lung homogenate levels of tumor necrosis factor-α (88% and 93% reduction, respectively), IL-6 (98% and 94% reduction), CXCL1 (66% and 75% reduction), and CXCL2 (47% and 67% reduction). LPS-induced recruited monocyte-macrophages (CD11cintCD11b+) were reduced (68%) with rIL-10. Correspondingly, LPS-induced lung tissue CCR2+ inflammatory monocyte-macrophage were reduced with rIL-10. There were also reductions in LPS-induced lung neutrophils, lymphocyte subpopulations, collagen content, and vimentin expression. These findings support the importance of studying resolution processes for the development of treatment after unintended environmental/occupational biohazard exposures. Short-term, lung-delivered rIL-10 favorably hastened inflammatory recovery processes following acute, high dose inhalant LPS exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.