SANTF demonstrated over 10% improvement in averaged F-measure on patient clustering compared to widely used non-negative matrix factorization (NMF) and k-means clustering methods. Multiple baselines were established by modeling patient data using patient-by-features matrices with different feature configurations and then performing NMF or k-means to cluster patients. Feature analysis identified latent groups of higher-order features that lead to medical insights. We also found that the latent groups of atomic features help to better correlate the latent groups of higher-order features.
Numerous studies addressing different methods of head injury prognostication have been published. Unfortunately, these studies often incorporate different head injury prognostication models and study populations, thus making direct comparison difficult, if not impossible. Furthermore, newer artificial intelligence tools such as machine learning methods have evolved in the field of data analysis, alongside more traditional methods of analysis. This study targets the development of a set of integrated prognostication model combining different classes of outcome and prognostic factors. Methodologies such as discriminant analysis, logistic regression, decision tree, Bayesian network, and neural network were employed in the study. Several prognostication models were developed using prospectively collected data from 513 severe closed head-injured patients admitted to the Neurocritical Unit at National Neuroscience Institute of Singapore, from April 1999 to February 2003. The correlation between prognostic factors at admission and outcome at 6 months following injury was studied. Overfitting error, which may falsely distinguish different outcomes, was compared graphically. Tenfold cross-validation technique, which reduces overfitting error, was used to validate outcome prediction accuracy. The overall prediction accuracy achieved ranged from 49.79% to 81.49%. Consistently high outcome prediction accuracy was seen with logistic regression and decision tree. Combining both logistic regression and decision tree models, a hybrid prediction model was then developed. This hybrid model would more accurately predict the 6-month post-severe head injury outcome using baseline admission parameters.
Accurate knowledge of a patient’s disease state and trajectory is critical in a clinical setting. Modern electronic healthcare records contain an increasingly large amount of data, and the ability to automatically identify the factors that influence patient outcomes stand to greatly improve the efficiency and quality of care. We examined the use of latent variable models (viz. Latent Dirichlet Allocation) to decompose free-text hospital notes into meaningful features, and the predictive power of these features for patient mortality. We considered three prediction regimes: (1) baseline prediction, (2) dynamic (time-varying) outcome prediction, and (3) retrospective outcome prediction. In each, our prediction task differs from the familiar time-varying situation whereby data accumulates; since fewer patients have long ICU stays, as we move forward in time fewer patients are available and the prediction task becomes increasingly difficult. We found that latent topic-derived features were effective in determining patient mortality under three timelines: inhospital, 30 day post-discharge, and 1 year post-discharge mortality. Our results demonstrated that the latent topic features important in predicting hospital mortality are very different from those that are important in post-discharge mortality. In general, latent topic features were more predictive than structured features, and a combination of the two performed best. The time-varying models that combined latent topic features and baseline features had AUCs that reached 0.85, 0.80, and 0.77 for in-hospital, 30 day post-discharge and 1 year post-discharge mortality respectively. Our results agreed with other work suggesting that the first 24 hours of patient information are often the most predictive of hospital mortality. Retrospective models that used a combination of latent topic features and structured features achieved AUCs of 0.96, 0.82, and 0.81 for in-hospital, 30 day, and 1-year mortality prediction. Our work focuses on the dynamic (time-varying) setting because models from this regime could facilitate an on-going severity stratification system that helps direct care-staff resources and inform treatment strategies.
ICU mortality risk prediction may help clinicians take effective interventions to improve patient outcome. Existing machine learning approaches often face challenges in integrating a comprehensive panel of physiologic variables and presenting to clinicians interpretable models. We aim to improve both accuracy and interpretability of prediction models by introducing Subgraph Augmented Non-negative Matrix Factorization (SANMF) on ICU physiologic time series. SANMF converts time series into a graph representation and applies frequent subgraph mining to automatically extract temporal trends. We then apply non-negative matrix factorization to group trends in a way that approximates patient pathophysiologic states. Trend groups are then used as features in training a logistic regression model for mortality risk prediction, and are also ranked according to their contribution to mortality risk. We evaluated SANMF against four empirical models on the task of predicting mortality or survival 30 days after discharge from ICU using the observed physiologic measurements between 12 and 24 hours after admission. SANMF outperforms all comparison models, and in particular, demonstrates an improvement in AUC (0.848 vs. 0.827, p<0.002) compared to a state-of-the-art machine learning method that uses manual feature engineering. Feature analysis was performed to illuminate insights and benefits of subgraph groups in mortality risk prediction.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.