Of the 206 patients who contracted Severe Acute Respiratory Syndrome (SARS) in Singapore five developed large artery cerebral infarctions. Four patients were critically-ill and three died. Intravenous immunoglobulin was given to three patients. An increased incidence of deep venous thrombosis and pulmonary embolism was also observed among the critically-ill patients. We believe our experience warrants an increased vigilance against stroke and other thrombotic complications among critically-ill SARS patients in future outbreaks, especially if treatment such as intravenous immunoglobulin, that increases pro-thrombotic tendency, is contemplated.
Numerous studies addressing different methods of head injury prognostication have been published. Unfortunately, these studies often incorporate different head injury prognostication models and study populations, thus making direct comparison difficult, if not impossible. Furthermore, newer artificial intelligence tools such as machine learning methods have evolved in the field of data analysis, alongside more traditional methods of analysis. This study targets the development of a set of integrated prognostication model combining different classes of outcome and prognostic factors. Methodologies such as discriminant analysis, logistic regression, decision tree, Bayesian network, and neural network were employed in the study. Several prognostication models were developed using prospectively collected data from 513 severe closed head-injured patients admitted to the Neurocritical Unit at National Neuroscience Institute of Singapore, from April 1999 to February 2003. The correlation between prognostic factors at admission and outcome at 6 months following injury was studied. Overfitting error, which may falsely distinguish different outcomes, was compared graphically. Tenfold cross-validation technique, which reduces overfitting error, was used to validate outcome prediction accuracy. The overall prediction accuracy achieved ranged from 49.79% to 81.49%. Consistently high outcome prediction accuracy was seen with logistic regression and decision tree. Combining both logistic regression and decision tree models, a hybrid prediction model was then developed. This hybrid model would more accurately predict the 6-month post-severe head injury outcome using baseline admission parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.