The aim of this meta-analysis was to evaluate the effects of complex training (CT) on sprint, jump, and change of direction (COD) ability among soccer players. After an electronic search, 10 peer-reviewed articles were considered in the meta-analysis. The athletes included in this meta-analysis were amateur to professional level male soccer players (age range, 14–23 years). These studies incorporated CT in soccer players who were compared to a control group. Significant moderate to large improvements were observed in the CT group [sprint: standard mean difference (SMD) = 0.92–1.91; jump: SMD = 0.96–1.58; COD: SMD = 0.97–1.49] when compared to control groups. Subgroup analysis were also conducted based on age, duration, and competitive level. The beneficial effects of CT were greater in players <18 vs. ≥18 years (linear sprinting; SMD = 2.01 vs. −0.13), after ≥8 vs. <8 weeks (jumping and COD; SMD = 1.55–2.01 vs. 0.31–0.64, respectively) and among professional vs. amateur players (linear sprinting and with COD; SMD = 1.53–1.58 vs. 0.08–0.63, respectively). In conclusion, regular soccer training programs may be supplemented with CT to improve sprint, jump, and COD performance. A longer duration of CT (≥8 weeks) seems to be optimal in improving the physical abilities of soccer players. Professional players and <18 years players may benefit more from CT program.
Background A growing body of literature is available regarding the effects of plyometric jump training (PJT) on measures of physical fitness (PF) and sport-specific performance (SSP) in-water sports athletes (WSA, i.e. those competing in sports that are practiced on [e.g. rowing] or in [e.g. swimming; water polo] water). Indeed, incoherent findings have been observed across individual studies making it difficult to provide the scientific community and coaches with consistent evidence. As such, a comprehensive systematic literature search should be conducted to clarify the existent evidence, identify the major gaps in the literature, and offer recommendations for future studies. Aim To examine the effects of PJT compared with active/specific-active controls on the PF (one-repetition maximum back squat strength, squat jump height, countermovement jump height, horizontal jump distance, body mass, fat mass, thigh girth) and SSP (in-water vertical jump, in-water agility, time trial) outcomes in WSA, through a systematic review with meta-analysis of randomized and non-randomized controlled studies. Methods The electronic databases PubMed, Scopus, and Web of Science were searched up to January 2022. According to the PICOS approach, the eligibility criteria were: (population) healthy WSA; (intervention) PJT interventions involving unilateral and/or bilateral jumps, and a minimal duration of ≥ 3 weeks; (comparator) active (i.e. standard sports training) or specific-active (i.e. alternative training intervention) control group(s); (outcome) at least one measure of PF (e.g. jump height) and/or SSP (e.g. time trial) before and after training; and (study design) multi-groups randomized and non-randomized controlled trials. The Physiotherapy Evidence Database (PEDro) scale was used to assess the methodological quality of the included studies. The DerSimonian and Laird random-effects model was used to compute the meta-analyses, reporting effect sizes (ES, i.e. Hedges’ g) with 95% confidence intervals (95% CIs). Statistical significance was set at p ≤ 0.05. Certainty or confidence in the body of evidence for each outcome was assessed using Grading of Recommendations Assessment, Development, and Evaluation (GRADE), considering its five dimensions: risk of bias in studies, indirectness, inconsistency, imprecision, and risk of publication bias. Results A total of 11,028 studies were identified with 26 considered eligible for inclusion. The median PEDro score across the included studies was 5.5 (moderate-to-high methodological quality). The included studies involved a total of 618 WSA of both sexes (330 participants in the intervention groups [31 groups] and 288 participants in the control groups [26 groups]), aged between 10 and 26 years, and from different sports disciplines such as swimming, triathlon, rowing, artistic swimming, and water polo. The duration of the training programmes in the intervention and control groups ranged from 4 to 36 weeks. The results of the meta-analysis indicated no effects of PJT compared to control conditions (including specific-active controls) for in-water vertical jump or agility (ES = − 0.15 to 0.03; p = 0.477 to 0.899), or for body mass, fat mass, and thigh girth (ES = 0.06 to 0.15; p = 0.452 to 0.841). In terms of measures of PF, moderate-to-large effects were noted in favour of the PJT groups compared to the control groups (including specific-active control groups) for one-repetition maximum back squat strength, horizontal jump distance, squat jump height, and countermovement jump height (ES = 0.67 to 1.47; p = 0.041 to < 0.001), in addition to a small effect noted in favour of the PJT for SSP time-trial speed (ES = 0.42; p = 0.005). Certainty of evidence across the included studies varied from very low-to-moderate. Conclusions PJT is more effective to improve measures of PF and SSP in WSA compared to control conditions involving traditional sport-specific training as well as alternative training interventions (e.g. resistance training). It is worth noting that the present findings are derived from 26 studies of moderate-to-high methodological quality, low-to-moderate impact of heterogeneity, and very low-to-moderate certainty of evidence based on GRADE. Trial registration The protocol for this systematic review with meta-analysis was published in the Open Science platform (OSF) on January 23, 2022, under the registration doi https://doi.org/10.17605/OSF.IO/NWHS3 (internet archive link: https://archive.org/details/osf-registrations-nwhs3-v1).
This study aimed to examine inter-limb jump asymmetries and their association with sport-specific performance in young swimmers. Thirty-eight (male, n = 19; female, n = 19) regional/national level young swimmers (age: 12.3 ± 1.2 years; height: 159.6 ± 8.2 cm; body mass: 52.5 ± 9.2 kg) participated in this study. Inter-limb asymmetries were assessed for single-leg countermovement jump (SLCMJ) and single-leg standing long jump (SLSLJ). Sport-specific performance was evaluated using front crawl (i.e., 50 m and 25 m) and front crawl kick (i.e., 50 m and 25 m). The kappa coefficient revealed a “slight” level of agreement (Κ = 0.156, 0.184, and 0.197 for female, male, and all, respectively) between the direction of asymmetry for SLCMJ and SLSLJ, indicating that asymmetries rarely favored the same limb during both tests. A paired sample t-test showed a significant difference (p = 0.025) between asymmetry scores obtained in SLCMJ and SLSLJ. No significant difference was found in asymmetry scores between males and females (p = 0.099 to 0.977). Additionally, no association between asymmetry scores and sport-specific performance was observed (p > 0.05). Our findings highlight the independent nature of inter-limb asymmetries derived from SLCMJ and SLSLJ among young male and female swimmers. Further, our results suggest no association between jumping asymmetries and sport-specific performance.
Background The reactive strength index (RSI) is meaningfully associated with independent markers of athletic (e.g., linear sprint speed) and neuromuscular performance [e.g., stretch–shortening cycle (SSC)]. Plyometric jump training (PJT) is particularly suitable to improve the RSI due to exercises performed in the SSC. However, no literature review has attempted to meta-analyse the large number of studies regarding the potential effects of PJT on the RSI in healthy individuals across the lifespan. Objective The aim of this systematic review with meta-analysis was to examine the effects of PJT on the RSI of healthy individuals across the lifespan compared with active/specific-active controls. Methods Three electronic databases (PubMed, Scopus, Web of Science) were searched up to May 2022. According to the PICOS approach, the eligibility criteria were: (1) healthy participants, (2) PJT interventions of ≥ 3 weeks, (3) active (e.g., athletes involved in standard training) and specific-active (e.g., individuals using heavy resistance training) control group(s), (4) a measure of jump-based RSI pre-post training, and (5) controlled studies with multi-groups in randomised and non-randomised designs. The Physiotherapy Evidence Database (PEDro) scale was used to assess the risk of bias. The random-effects model was used to compute the meta-analyses, reporting Hedges’ g effect sizes (ES) with 95% confidence intervals (95% CIs). Statistical significance was set at p ≤ 0.05. Subgroup analyses were performed (chronological age; PJT duration, frequency, number of sessions, total number of jumps; randomization). A meta-regression was conducted to verify if PJT frequency, duration, and total number of sessions predicted the effects of PJT on the RSI. Certainty or confidence in the body of evidence was assessed using Grading of Recommendations Assessment, Development, and Evaluation (GRADE). Potential adverse health effects derived from PJT were researched and reported. Results Sixty-one articles were meta-analysed, with a median PEDro score of 6.0, a low risk of bias and good methodological quality, comprising 2576 participants with an age range of 8.1–73.1 years (males, ~ 78%; aged under 18 years, ~ 60%); 42 studies included participants with a sport background (e.g., soccer, runners). The PJT duration ranged from 4 to 96 weeks, with one to three weekly exercise sessions. The RSI testing protocols involved the use of contact mats (n = 42) and force platforms (n = 19). Most studies reported RSI as mm/ms (n = 25 studies) from drop jump analysis (n = 47 studies). In general, PJT groups improved RSI compared to controls: ES = 0.54, 95% CI 0.46–0.62, p < 0.001. Training-induced RSI changes were greater (p = 0.023) for adults [i.e., age ≥ 18 years (group mean)] compared with youth. PJT was more effective with a duration of > 7 weeks versus ≤ 7 weeks, > 14 total PJT sessions versus ≤ 14 sessions, and three weekly sessions versus < three sessions (p = 0.027–0.060). Similar RSI improvements were noted after ≤ 1080 versus > 1080 total jumps, and for non-randomised versus randomised studies. Heterogeneity (I2) was low (0.0–22.2%) in nine analyses and moderate in three analyses (29.1–58.1%). According to the meta-regression, none of the analysed training variables explained the effects of PJT on RSI (p = 0.714–0.984, R2 = 0.0). The certainty of the evidence was moderate for the main analysis, and low-to-moderate across the moderator analyses. Most studies did not report soreness, pain, injury or related adverse effects related to PJT. Conclusions The effects of PJT on the RSI were greater compared with active/specific-active controls, including traditional sport-specific training as well as alternative training interventions (e.g., high-load slow-speed resistance training). This conclusion is derived from 61 articles with low risk of bias (good methodological quality), low heterogeneity, and moderate certainty of evidence, comprising 2576 participants. PJT-related improvements on RSI were greater for adults versus youths, after > 7 training weeks versus ≤ 7 weeks, with > 14 total PJT versus ≤ 14 sessions, and with three versus < three weekly sessions.
This study aimed at examining the effects of nine weeks of sand-based plyometric-jump training (PJT) combined with endurance running on either outdoor or treadmill surface on measures of physical fitness. Male participants (age, 20.1 ± 1.7 years) were randomly assigned to a sand-based PJT combined with endurance running on outdoor surface (OT, n = 25) or treadmill surface (TT, n = 25). The endurance running intervention comprised a mixed training method, i.e., long slow distance, tempo, and interval running drills. A control group was additionally included in this study (CG, n = 25). Participants in CG followed their regular physical activity as OT and TT but did not receive any specific intervention. Individuals were assessed for their 50-m linear sprint time, standing long jump (SLJ) distance, cardiorespiratory fitness (i.e., Cooper test), forced vital capacity (FVC), calf girth, and resting heart rate (RHR). A three (groups: OT, TT, CG) by two (time: pre, post) ANOVA for repeated measures was used to analyze the exercise-specific effects. In case of significant group-by-time interactions, Bonferroni adjusted paired (within-group) and independent (between-group comparisons at post) t-tests were used for post-hoc analyses. Significant group-by-time interactions were found for all dependent variables (p < 0.001 – 0.002, ɳp2 = 0.16 – 0.78). Group-specific post-hoc tests showed improvements for all variables after OT (p < 0.001, Hedges’g effect size [g] = 0.05 – 1.94) and TT (p < 0.001, g = 0.04 – 2.73), but not in the CG (p = 0.058 – 1.000, g = 0.00 – 0.34). Compared to CG, OT showed larger SLJ (p = 0.001), cardiorespiratory fitness (p = 0.004), FVC (p = 0.008), and RHR (p < 0.001) improvements. TT showed larger improvements in SLJ (p = 0.036), cardiorespiratory fitness (p < 0.001), and RHR (p < 0.001) compared with CG. Compared to OT, TT showed larger improvements for SLJ (p = 0.018). In conclusion, sand-based PJT combined with either OT or TT similarly improved most measures of physical fitness, with greater SLJ improvement after TT. Coaches may use both concurrent exercise regimes based on preferences and logistical constrains (e.g., weather; access to treadmill equipment).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.