The motive behind present work was to formulate and evaluate gel containing microsponges of diclofenac diethylamine to provide prolonged release for proficient arthritis therapy. Quasi-emulsion solvent diffusion method was implied using Eudragit RS-100 and microsponges with varied drug-polymer ratios were prepared. For the sake of optimization, diverse factors affecting microparticles physical properties were too investigated. Microsponges were characterized by SEM, DSC, FT-IR, XRPD and particle size analysis, and evaluated for morphology, drug loading, in vitro drug release and ex vivo diffusion as well. There were no chemical interactions between drug and polymers used as revealed by compatibility studies outcomes. The drug polymer ratio reflected notable effect on drug content, encapsulation efficiency and particle size. SEM results revealed spherical microsponges with porous surface, and had 7.21 μm mean particle size. The microsponges were then incorporated in gel; which exhibited viscous modulus along with pseudoplastic behavior. In vitro drug release results depicted that microsponges with 1:2 drug-polymer ratio were more efficient to give extended drug release of 75.88% at the end of 8 h; while conventional formulation get exhausted incredibly earlier by releasing 81.11% drug at the end of 4 h only. Thus the formulated microsponge-based gel of diclofenac diethylamine would be a promising alternative to conventional therapy for safer and efficient treatment of arthritis and musculoskeletal disorders.
Current discoveries as well as research findings on various types of carbon nanostructures have inspired research into their utilization in a number of fields. These carbon nanostructures offer uses in pharmacy, medicine and different therapies. One such unique carbon nanostructure includes carbon nanotubes (CNTs), which are one-dimensional allotropes of carbon nanostructure that can have a length-to-diameter ratio greater than 1,000,000. After their discovery, CNTs have drawn extensive research attention due to their excellent material properties. Their physical, chemical and electronic properties are excellent and their composites provide great possibilities for enormous nanometer applications. The current study provides a systematic review based on prior literature review and data gathered from various sources. The various research studies from many research labs and organizations were systematically retrieved, collected, compiled and written. The entire collection and compilation of this review concluded the use of CNT approaches and their efficacy and safety for the treatment of various diseases such as brain tumors or cancer via nanotechnology-based drug delivery, phototherapy, gene therapy, antiviral therapy, antifungal therapy, antibacterial therapy and other biomedical applications. The current review covers diverse applications of CNTs in designing a range of targeted drug delivery systems and application for various therapies. It concludes with a discussion on how CNTs based medicines can expand in the future.
The rationale behind present research effort was to enhance CTZ solubility and efficacyviaforming complex with hydroxypropyl β-cyclodextrin (HP-β-CD) nanosponges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.