Unmanned aerial vehicle (UAV) based crop spraying has become a popular alternative in the field of precision agriculture. One of the key goals of UAV based spraying is achieving spray coverage that is as uniform as possible to ensure maximum spray efficacy. Most of the existing studies in the literature focus on analysing the effects of spraying parameters on the uniformity of coverage distribution using experimental studies. However, in this work, we propose a novel generalized data-driven optimal path-planning framework aimed at finding the optimal operational flight parameters (flight speed and pass widths) for a lawnmower coverage path plan to meet the specified spray coverage rate while ensuring the uniformity. The framework takes a spray distribution model as an input and computes the optimal operational parameters for the coverage path plan to minimize coverage non-uniformity without making any assumptions on the UAV type. Furthermore, we also propose a neural network structure using Gaussian kernel neurons to design the spraying model using experimental data. The neural network structure makes no assumption about the type of UAV, onboard nozzle placement, or the flight parameters. The accuracy of the modelling solution only depends on the quality of the training data. In other words, higher diversity of the training data in terms of the flight and spraying parameters would result in a modelling solution that is more representative of the spraying distribution and consequently improve the quality of the operational parameters obtained from the proposed optimization framework. In this work, we present a case study to demonstrate the use case and test the performance of the proposed framework via simulation and experiments using the DJI AGRAS-T10 drone. The results showed that the optimal pass-width solutions for low forward speeds were similar to optimizing the positioning of the nozzles on a boom sprayer to achieve uniform coverage. Whereas, at high speeds, the pass-width was comparatively higher as the spread of the effective coverage over each pass increased. A discussion contextualized in the case study is provided to highlight the salient features and limitations of the proposed framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.