We study the problem of allocating a set of indivisible goods among a set of agents in a fair and efficient manner. An allocation is said to be fair if it is envy-free up to one good (EF1), which means that each agent prefers its own bundle over the bundle of any other agent up to the removal of one good. In addition, an allocation is deemed efficient if it satisfies Pareto efficiency. While each of these well-studied properties is easy to achieve separately, achieving them together is far from obvious. Recently, Caragiannis et al. (2016) established the surprising result that when agents have additive valuations for the goods, there always exists an allocation that simultaneously satisfies these two seemingly incompatible properties. Specifically, they showed that an allocation that maximizes the Nash social welfare objective is both EF1 and Pareto efficient. However, the problem of maximizing Nash social welfare is NP-hard. As a result, this approach does not provide an efficient algorithm for finding a fair and efficient allocation.In this paper, we bypass this barrier, and develop a pseudopolynomial time algorithm for finding allocations that are EF1 and Pareto efficient; in particular, when the valuations are bounded, our algorithm finds such an allocation in polynomial time. Furthermore, we establish a stronger existence result compared to Caragiannis et al. (2016): For additive valuations, there always exists an allocation that is EF1 and fractionally Pareto efficient.Another key contribution of our work is to show that our algorithm provides a polynomialtime 1.45-approximation to the Nash social welfare objective. This improves upon the best known approximation ratio for this problem (namely, the 2-approximation algorithm of Cole et al., 2017), and also matches the lower bound on the integrality gap of the convex program of Cole et al. (2017). Unlike many of the existing approaches, our algorithm is completely combinatorial, and relies on constructing integral Fisher markets wherein specific equilibria are not only efficient, but also fair.
We study fair allocation of indivisible chores (i.e., items with non-positive value) among agents with additive valuations. An allocation is deemed fair if it is (approximately) equitable, which means that the disutilities of the agents are (approximately) equal. Our main theoretical contribution is to show that there always exists an allocation that is simultaneously equitable up to one chore (EQ1) and Pareto optimal (PO), and to provide a pseudopolynomial-time algorithm for computing such an allocation. In addition, we observe that the Leximin solution-which is known to satisfy a strong form of approximate equitability in the goods setting-fails to satisfy even EQ1 for chores. It does, however, satisfy a novel fairness notion that we call equitability up to any duplicated chore. Our experiments on synthetic as well as real-world data obtained from the Spliddit website reveal that the algorithms considered in our work satisfy approximate fairness and e ciency properties signi cantly more often than the algorithm currently deployed on Spliddit.
We study the problem of manipulation of the men-proposing Gale-Shapley algorithm by a single woman via permutation of her true preference list. Our contribution is threefold: First, we show that the matching induced by an optimal manipulation is stable with respect to the true preferences. Second, we identify a class of optimal manipulations called inconspicuous manipulations which, in addition to preserving stability, are also nearly identical to the true preference list of the manipulator (making the manipulation hard to be detected). Third, for optimal inconspicuous manipulations, we strengthen the stability result by showing that the entire stable lattice of the manipulated instance is contained inside the original lattice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.