We present measurements of flows and fluxes of phytoplankton to Conch Reef, Florida, a Caribbean reef dominated by sponges and soft corals, located in 15 m of water offshore of Key Largo. Vertical profiles of chlorophyll a, a proxy for phytoplankton biomass, showed a near-bed depletion, indicating the existence of concentration boundary layers. Along with simultaneous measurements of velocity profiles, near-bed turbulence, and temperature stratification, these profiles were used to compute a, the mass transfer velocity of phytoplankton to the bed (i.e., the flux to the bed normalized by near-bed concentration). The a value ranged from 240 to +130 m d 21 , with a significant linear positive relationship with shear velocity. The median value of a 5 48 6 20 m d 21 is larger than would be expected, given the observed population of filter-feeding sponges. Nonetheless, these large values of a are consistent with values found recently for another coral reef as well as for a soft bottom estuarine community. Taken as a whole, these measurements indicate that reefs with large roughness and/or energetic currents should be able to support higher biomasses of benthic organisms than would low relief reefs or reefs in sluggish waters.
The Mpemba effect describes the situation in which a hot system cools faster than an identical copy that is initiated at a colder temperature. In many of the experimental observations of the effect, e.g. in water and clathrate hydrates, it is defined by the phase transition timing. However, none of the theoretical investigations so far considered the timing of the phase transition, and most of the abstract models used to explore the Mpemba effect do not have a phase transition. We use the phenomenological Landau theory for phase transitions to identify the second order phase transition time, and demonstrate with a concrete example that a Mpemba effect can exist in such models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.