Background: Nowadays, cardiovascular diseases (CVD) remain the main cause of death worldwide. A heart sound signal or phonocardiogram (PCG) is the most simple, economical and non-invasive tool to detect CVDs. Advances in technology and signal processing allow the design of computer-aided systems for heart illnesses detection from PCG signals. Purpose: The paper proposes a pipeline and benchmark for binary heart sounds classification. The features extraction architecture is focused on the use of Matching Pursuit time-frequency decomposition using Gabor dictionaries and the Linear Predictive Coding method of a residual. We compare seven classifiers with two different approaches: feature averaging and cycle averaging. Methods: We test our proposal on the PhysioNet/CinC challenge 2016 database, which comprises a wide variety of heart sounds recorded from patients with normal and different pathological heart conditions. We conduct a 10-fold stratified cross-validation method to evaluate the performance of different classification algorithms. The feature sets were also tested when using an oversampling method for balancing. Results: The benchmark identified systems showing a satisfying performance in terms of accuracy, sensitivity, and Matthews correlation coefficient. Results can be improved when using feature averaging and an oversampling strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.