We investigated the possibility to integrate a free head motion eye-tracking system as input device in air traffic control (ATC). We found that the combined use of gaze dwell-time selection and continuous eye-gaze feedback allowed the best performance and that target size had a greater impact on performance than target distance.
Aircraft must follow strict Air Traffic Control (ATC) rules. One of these rules is that aircraft have to fly over pre-defined Flight Routes (FR). Current ATC visualizations do not display FRs because they are numerous and run into each other, and thus spoil the visualization. The schematic views for metro maps are used to maximize the transmission of relevant information (lines, metro stops) of network visualization. In this paper, we will focus on two different issues. First, we show how we transposed mathematical constraints used to produce metro maps into the specific field of ATC. The view produced is a context compatible, 2D picture of a schematic maps view for Air Traffic Control. Second, we propose to investigate the generation and placement of colors to be assigned to lines of the network. The first step is to find as many colors as lines of the network. These colors must be perceptually as distinct as possible, and available in the vocabulary of colors. The second step is to solve the NP-complete problem of the optimal assignment of these colors so that close lines have the most perceptively distant color. Finally, we assess the map produced through experimentation to validate its quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.