Mungbean (Vigna radiata) is a fast-growing, warm-season legume crop that is primarily cultivated in developing countries of Asia. Here we construct a draft genome sequence of mungbean to facilitate genome research into the subgenus Ceratotropis, which includes several important dietary legumes in Asia, and to enable a better understanding of the evolution of leguminous species. Based on the de novo assembly of additional wild mungbean species, the divergence of what was eventually domesticated and the sampled wild mungbean species appears to have predated domestication. Moreover, the de novo assembly of a tetraploid Vigna species (V. reflexo-pilosa var. glabra) provides genomic evidence of a recent allopolyploid event. The species tree is constructed using de novo RNA-seq assemblies of 22 accessions of 18 Vigna species and protein sets of Glycine max. The present assembly of V. radiata var. radiata will facilitate genome research and accelerate molecular breeding of the subgenus Ceratotropis.
The drought stress tolerance of two Solanum tuberosum subsp. andigena landraces, one hybrid (adg×tbr) and Atlantic (S. tuberosum subsp. tuberosum) has been evaluated. Photosynthesis in the Andigena landraces during prolonged drought was maintained significantly longer than in the Tuberosum (Atlantic) line. Among the Andigena landraces, ‘Sullu’ (SUL) was more drought resistant than ‘Negra Ojosa’ (NOJ). Microarray analysis and metabolite data from leaf samples taken at the point of maximum stress suggested higher mitochondrial metabolic activity in SUL than in NOJ. A greater induction of chloroplast-localized antioxidant and chaperone genes in SUL compared with NOJ was evident. ABA-responsive TFs were more induced in NOJ compared with SUL, including WRKY1, mediating a response in SA signalling that may give rise to increased ROS. NOJ may be experiencing higher ROS levels than SUL. Metabolite profiles of NOJ were characterized by compounds indicative of stress, for example, proline, trehalose, and GABA, which accumulated to a higher degree than in SUL. The differences between the Andigena lines were not explained by protective roles of compatible solutes; hexoses and complex sugars were similar in both landraces. Instead, lower levels of ROS accumulation, greater mitochondrial activity and active chloroplast defences contributed to a lower stress load in SUL than in NOJ during drought.
Two potato clones (Solanum tuberosum L.) of the Andean cultivar group, called Sullu and SS2613, with different drought-tolerance phenotypes were exposed to a continuously increasing drought stress in a field trial. At the physiological level, while relative leaf water contents were similar in both clones, osmotic potential was lower in Sullu and declined more strongly during drought compared with SS2613. In the drought-stressed plants, tuber yield was reduced by about 70% compared with control plants in both clones. Potato cDNA microarrays and target metabolite analysis were performed on leaves sampled at several time-points after the onset of drought. At the transcriptomic level, photosynthesis-related genes were already strongly repressed in Sullu after 28 d of withholding irrigation and even more strongly after a longer stress duration, whereas, in SS2613, repression occurred only after 49 d of soil drying; similarly, a strong perturbation of carbohydrate-related genes was observed in Sullu. At the metabolite level, differential accumulation of osmotically active solutes was observed between the two cultivars; indeed, in Sullu, contents of galactose, inositol, galactinol, proline, and proline analogues were higher upon drought stress compared with SS2613. These results point to different drought responses in the cultivars at the leaf level, with, however, similar tuber yield reductions. The previously shown tolerant clone Sullu lost part of its tolerance under the experimental conditions used here; it was, however, able to maintain an absolute yield three times higher than SS2613.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.