Microservices changed cloud computing by moving the applications’ complexity from one monolithic executable to thousands of network interactions between small components. Given the increasing deployment sizes, the architectural exploitation challenges, and the impact on data-centers’ power consumption, we need to efficiently track this complexity. Within this article, we propose a black-box monitoring approach to track microservices at scale, focusing on architectural metrics, power consumption, application performance, and network performance. The proposed approach is transparent w.r.t. the monitored applications, generates less overhead w.r.t. black-box approaches available in the state-of-the-art, and provides fine-grain accurate metrics.
Heterogeneous computing platforms are now a valuable solution to continue to meet Service Level Agreements (SLAs) for compute intensive cloud workloads. Field Programmable Gate Arrays (FPGAs) effectively accelerate cloud workloads, however, these workloads have a spiky behavior as well as long periods of underutilization. Sharing the FPGA with multiple tenants then helps to increase the board's time utilization. In this paper we present BlastFunction, a distributed FPGA sharing system for the acceleration of microservices and serverless applications in cloud environments. BlastFunction includes a Remote OpenCL Library to access the shared devices transparently; multiple Device Managers to time-share and monitor the FPGAs and a central Accelerators Registry to allocate the available devices. BlastFunction reaches higher utilization and throughput w.r.t. a native execution thanks to device sharing, with minimal differences in latency given by the concurrent accesses.
Multi-tenant virtualized infrastructures allow cloud providers to minimize costs through workload consolidation. One of the largest costs is power consumption, which is challenging to understand in heterogeneous environments. We propose a power modeling methodology that tackles this complexity using a divide-andconquer approach. Our results outperform previous research work, achieving a relative error of 2% on average and under 4% in almost all cases. Models are portable across similar architectures, enabling predictions of power consumption before migrating a tenant to a different hardware platform. Moreover, we show the models allow us to evaluate colocations of tenants to reduce overall consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.