Although much information on metabolic pathways within individual organisms is available, little is known about the pathways operating in natural communities in which extensive sharing of nutritional resources is the rule. In order to analyse such a consortium pathway, we have investigated the flow of 4-chlorosalicylate as carbon substrate within a simple chemostat microbial community using 13C-labelled metabolites and isotopic ratio mass spectrometric analysis of label enrichment in immunocaptured member populations of the community. A complex pathway network of carbon sharing was thereby revealed, involving two different metabolic routes, one of which is completely novel and involves the toxic metabolite protoanemonin. The high stability of the community results, at least in part, from interdependencies based on carbon sharing and the rapid removal of toxic metabolites.
In the course of our screening for dibenzo-p-dioxin-utilizing bacteria, a Sphingomonas sp. strain was isolated from enrichment cultures inoculated with water samples from the river Elbe. The isolate grew with both the biaryl ethers dibenzo-p-dioxin and dibenzofuran (DF) as the sole sources of carbon and energy, showing doubling times of about 8 and 5 h, respectively. Biodegradation of the two aromatic compounds initially proceeded after an oxygenolytic attack at the angular position adjacent to the ether bridge, producing 2,2',3-trihydroxydiphenyl ether or 2,2',3-trihydroxybiphenyl from the initially formed dihydrodiols, which represent extremely unstable hemiacetals. Results obtained from determinations of enzyme activities and oxygen consumption suggest meta cleavage of the trihydroxy compounds. During dibenzofuran degradation, hydrolysis of 2-hydroxy-6-oxo-6-(2-hydroxyphenyl)-hexa-2,4-dienoate yielded salicylate, which was branched into the catechol meta cleavage pathway and the gentisate pathway. Catechol obtained from the product of meta ring fission of 2,2',3-trihydroxydiphenyl ether was both ortho and meta cleaved by Sphingomonas sp. strain RW1 when this organism was grown with dibenzo-p-dioxin.
Chloroaromatics, a major class of industrial pollutants, may be oxidatively metabolized to chlorocatechols by soil and water microorganisms that have evolved catabolic activities toward these xenobiotics. We show here that 4-chlorocatechol can be further transformed by enzymes of the ubiquitous 3-oxoadipate pathway. However, whereas chloromuconate cycloisomerases catalyze the dechlorination of 3-chloro-cis,cis-muconate to form cis-dienelactone, muconate cycloisomerases catalyze a novel reaction, i.e. the dechlorination and concomitant decarboxylation to form 4-methylenebut-2-en-4-olide (protoanemonin), an ordinarily plant-derived antibiotic that is toxic to microorganisms.
Polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF; PCDD/F, dioxins) have not been commercially produced in bulk amounts, as were polychlorinated biphenyls and other haloaromatic organics. Within the past two decades a lot of information has accumulated on the biodegradation of PCDD/F and other dioxin-like compounds because of their toxicity and because of significant environmental concern about many congeners of this class of chemicals. PCDD/F are subjected to reductive dehalogenations leading to less halogenated congeners, which can be attacked efficiently by fungal and bacterial oxidases and dioxygenases. In several cases these compounds can be utilized as carbon and energy sources. Pathways for their enzymatic degradation and the organisation of the corresponding degradative genes have been elucidated. Consequently, biotechnological applications will exploit the degradative potential of such microorganisms for bioremediation of contaminated sites.
A Pseudomonas sp. strain, HH69, and a mixed culture, designated HH27, were isolated by selective enrichment from soil samples. The pure strain and the mixed culture grew aerobically on dibenzofuran as the sole source of carbon and energy. Degradation proceeded via salicylic acid which was branched into the gentisic acid and the catechol pathway. Both salicylic acid and gentisic acid accumulated in the culture medium of strain HH69. The acids were slowly metabolized after growth ceased. The enzymes responsible for their metabolism showed relatively low activities. Besides the above-mentioned acids, 2-hydroxyacetophenone, benzopyran-4-one (chromone), several 2-substituted chroman-4-ones, and traces of the four isomeric monohydroxydibenzofurans were identified in the culture medium. 2,2',3-Trihydroxybiphenyl was isolated from the medium of a dibenzofuran-converting mutant derived from parent strain HH69, which can no longer grow on dibenzofuran. This gives evidence for a novel type of dioxygenases responsible for the attack on the biarylether structure of the dibenzofuran molecule. A meta-fission mechanism for cleavage of the dihydroxylated aromatic nucleus of 2,2',3-trihydroxybiphenyl is suggested as the next enzymatic step in the degradative pathway. MATERIALS AND METHODS Media and growth conditions. A mineral salts medium was used containing (per liter): 3.5 g of Na2HPO4 2H20, 1 g of KH2PO4, 0.5 g of (NH4)2SO4, 0.1 g of MgCl2 6H20, 50 mg
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.