[1] Recent satellite observations and dynamical studies have demonstrated the existence of filamentary structures in chemical tracer fields in the stratosphere. It is also evident that such features are often below the spatial resolution of the highest-resolution Eulerian models that have been used up to the present time. These observations have motivated the development of a novel Chemical Lagranigan Model of the Stratosphere (CLaMS) that is based on a Lagrangian transport of tracers. The description of CLaMS is divided into two parts: Part 1 (this paper) concentrates on the Lagrangian dynamics, i.e., on the calculation of trajectories and on a completely new mixing algorithm based on a dynamically adaptive grid, while part 2 describes the chemical integration and initialization procedure. The mixing of different air masses in CLaMS is driven by the large-scale horizontal flow deformation and takes into account the mass exchange between the nearest neighbors determined by Delaunay triangulation. Here we formulate an isentropic, i.e., two-dimensional version of the model and verify the mixing algorithm using tracer distributions measured during the space shuttle CRISTA-1 experiment where highly resolved stratospheric structures were observed in early November 1994. A comparison of the measured Southern Hemispheric N 2 O distribution with CLaMS results allows the intensity of simulated mixing to be optimized. The long-term robustness of the transport scheme is investigated in a case study of the 1996-1997 Northern Hemisphere polar vortex. This study further provides a dynamical framework for investigations of chemical arctic ozone destruction discussed in part 2.
The large burden of sulfate aerosols injected into the stratosphere by the eruption of Mount Pinatubo in 1991 cooled Earth and enhanced the destruction of polar ozone in the subsequent few years. The continuous injection of sulfur into the stratosphere has been suggested as a "geoengineering" scheme to counteract global warming. We use an empirical relationship between ozone depletion and chlorine activation to estimate how this approach might influence polar ozone. An injection of sulfur large enough to compensate for surface warming caused by the doubling of atmospheric CO2 would strongly increase the extent of Arctic ozone depletion during the present century for cold winters and would cause a considerable delay, between 30 and 70 years, in the expected recovery of the Antarctic ozone hole.
We compare global water vapor observations from Microwave Limb Sounder (MLS) and simulations with the Lagrangian chemical transport model CLaMS (Chemical Lagrangian Model of the Stratosphere) to investigate the pathways of water vapor into the lower stratosphere during Northern Hemisphere (NH) summer. We find good agreement between the simulation and observations, with an effect of the satellite averaging kernel especially at high latitudes. The Asian and American monsoons emerge as regions of particularly high water vapor mixing ratios in the lower stratosphere during boreal summer. In NH midlatitudes and high latitudes, a clear anticorrelation between water vapor and ozone daily tendencies reveals a large region influenced by frequent horizontal transport from low latitudes, extending up to about 450K during summer and fall. Analysis of the zonal mean tracer continuity equation shows that close to the subtropics, this horizontal transport is mainly caused by the residual circulation. In contrast, at higher latitudes, poleward of about 50°N, eddy mixing dominates the horizontal water vapor transport. Model simulations with transport barriers confirm that almost the entire annual cycle of water vapor in NH midlatitudes above about 360K, with maximum mixing ratios during summer and fall, is caused by horizontal transport from low latitudes. In the model, highest water vapor mixing ratios in this region are clearly linked to horizontal transport from the subtropics.
Abstract. The impact of different boundary layer source regions in Asia on the chemical composition of the Asian monsoon anticyclone, considering its intraseasonal variability in 2012, is analysed by simulations of the Chemical Lagrangian Model of the Stratosphere (CLaMS) using artificial emission tracers. The horizontal distribution of simulated CO, O3, and artificial emission tracers for India/China are in good agreement with patterns found in satellite measurements of O3 and CO by the Aura Microwave Limb Sounder (MLS). Using in addition, correlations of artificial emission tracers with potential vorticity demonstrates that the emission tracer for India/China is a very good proxy for spatial distribution of trace gases within the Asian monsoon anticyclone. The Asian monsoon anticyclone constitutes a horizontal transport barrier for emission tracers and is highly variable in location and shape. From the end of June to early August, a northward movement of the anticyclone and, during September, a strong broadening of the spatial distribution of the emission tracer for India/China towards the tropics are found. In addition to the change of the location of the anticyclone, the contribution of different boundary source regions to the composition of the Asian monsoon anticyclone in the upper troposphere strongly depends on its intraseasonal variability and is therefore more complex than hitherto believed. The largest contributions to the composition of the air mass in the anticyclone are found from northern India and Southeast Asia at a potential temperature of 380 K. In the early (mid-June to mid-July) and late (September) period of the 2012 monsoon season, contributions of emissions from Southeast Asia are highest; in the intervening period (early August), emissions from northern India have the largest impact. Our findings show that the temporal variation of the contribution of different convective regions is imprinted in the chemical composition of the Asian monsoon anticyclone. Air masses originating in Southeast Asia are found both within and outside of the Asian monsoon anticyclone because these air masses experience, in addition to transport within the anticyclone, upward transport at the southeastern flank of the anticyclone and in the tropics. Subsequently, isentropic poleward transport of these air masses occurs at around 380 K with the result that the extratropical lowermost stratosphere in the Northern Hemisphere is flooded by the end of September with air masses originating in Southeast Asia. Even after the breakup of the anticyclonic circulation (around the end of September), significant contributions of air masses originating in India/China are still found in the upper troposphere over Asia. Our results demonstrate that emissions from India, China, and Southeast Asia have a significant impact on the chemical composition of the lowermost stratosphere of the Northern Hemisphere, in particular at the end of the monsoon season in September/October 2012.
Abstract. The European Centre for Medium-Range Weather Forecasts' (ECMWF's) next-generation reanalysis ERA5 provides many improvements, but it also confronts the community with a “big data” challenge. Data storage requirements for ERA5 increase by a factor of ∼80 compared with the ERA-Interim reanalysis, introduced a decade ago. Considering the significant increase in resources required for working with the new ERA5 data set, it is important to assess its impact on Lagrangian transport simulations. To quantify the differences between transport simulations using ERA5 and ERA-Interim data, we analyzed comprehensive global sets of 10-day forward trajectories for the free troposphere and the stratosphere for the year 2017. The new ERA5 data have a considerable impact on the simulations. Spatial transport deviations between ERA5 and ERA-Interim trajectories are up to an order of magnitude larger than those caused by parameterized diffusion and subgrid-scale wind fluctuations after 1 day and still up to a factor of 2–3 larger after 10 days. Depending on the height range, the spatial differences between the trajectories map into deviations as large as 3 K in temperature, 30 % in specific humidity, 1.8 % in potential temperature, and 50 % in potential vorticity after 1 day. Part of the differences between ERA5 and ERA-Interim is attributed to the better spatial and temporal resolution of the ERA5 reanalysis, which allows for a better representation of convective updrafts, gravity waves, tropical cyclones, and other meso- to synoptic-scale features of the atmosphere. Another important finding is that ERA5 trajectories exhibit significantly improved conservation of potential temperature in the stratosphere, pointing to an improved consistency of ECMWF's forecast model and observations that leads to smaller data assimilation increments. We conducted a number of downsampling experiments with the ERA5 data, in which we reduced the numbers of meteorological time steps, vertical levels, and horizontal grid points. Significant differences remain present in the transport simulations, if we downsample the ERA5 data to a resolution similar to ERA-Interim. This points to substantial changes of the forecast model, observations, and assimilation system of ERA5 in addition to improved resolution. A comparison of two Lagrangian trajectory models allowed us to assess the readiness of the codes and workflows to handle the comprehensive ERA5 data and to demonstrate the consistency of the simulation results. Our results will help to guide future Lagrangian transport studies attempting to navigate the increased computational complexity and leverage the considerable benefits and improvements of ECMWF's new ERA5 data set.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.