Our findings suggest that NG may exert its antidiabetic effect by extra-pancreatic action and by suppressing carbohydrate absorption from intestine, thereby reducing the postprandial increase in blood GLU levels.
The aim of the current study was to investigate the oral antidiabetic activity of four structurally-related triterpenic acids: ursolic (RE-01), oleanolic (RE-02), moronic (RE-03) and morolic (RE-04) acids. STZ-nicotinamide diabetic rats were treated with these triterpenes (50 mg/kg) and the antidiabetic effects in acute experiment were determined. All compounds showed significant antidiabetic activity in comparison with control group (p<0.05). The in vitro inhibitory activity of compounds against protein tyrosine phosphatase 1B (PTP-1B) was also evaluated. At 50 μM, the enzymatic activity was almost completely inhibited. All compounds were docked with a crystal structure of PTP-1B. Docking results suggested the potential binding of the triterpenic acids in a binding pocket next to the catalytic site. An extensive hydrogen bond network with the carboxyl group and Van der Waals interactions stabilize the protein-ligand complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.