The assessment of pressure pain threshold (PPT) provides a quantitative value related to the mechanical sensitivity to pain of deep structures. Although excellent reliability of PPT has been reported in numerous anatomical locations, its absolute and relative reliability in the lower back region remains to be determined. Because of the high prevalence of low back pain in the general population and because low back pain is one of the leading causes of disability in industrialized countries, assessing pressure pain thresholds over the low back is particularly of interest. The purpose of this study study was (1) to evaluate the intra- and inter- absolute and relative reliability of PPT within 14 locations covering the low back region of asymptomatic individuals and (2) to determine the number of trial required to ensure reliable PPT measurements. Fifteen asymptomatic subjects were included in this study. PPTs were assessed among 14 anatomical locations in the low back region over two sessions separated by one hour interval. For the two sessions, three PPT assessments were performed on each location. Reliability was assessed computing intraclass correlation coefficients (ICC), standard error of measurement (SEM) and minimum detectable change (MDC) for all possible combinations between trials and sessions. Bland-Altman plots were also generated to assess potential bias in the dataset. Relative reliability for both intra- and inter- session was almost perfect with ICC ranged from 0.85 to 0.99. With respect to the intra-session, no statistical difference was reported for ICCs and SEM regardless of the conducted comparisons between trials. Conversely, for inter-session, ICCs and SEM values were significantly larger when two consecutive PPT measurements were used for data analysis. No significant difference was observed for the comparison between two consecutive measurements and three measurements. Excellent relative and absolute reliabilities were reported for both intra- and inter-session. Reliable measurements can be equally achieved when using the mean of two or three consecutive PPT measurements, as usually proposed in the literature, or with only the first one. Although reliability was almost perfect regardless of the conducted comparison between PPT assessments, our results suggest using two consecutive measurements to obtain higher short term absolute reliability.
BackgroundPressure pain thresholds (PPT) are commonly used to quantify mechanical pain sensitivity of deep structures. Excellent PPT reliability has been previously reported among the low back of healthy subjects. However, there is a lack of studies assessing PPT over the low back of workers exposed to biomechanical risk factors of low back pain. Thus, the purpose of this study was threefold: (1) to evaluate the intra-session absolute and relative reliability as well as minimal detectable change (MDC) values of PPT within 14 locations covering the low back region of vine-workers and (2) to determine the number of trial required to ensure reliable PPT assessments and (3) to assess the effect of modifier factors such as gender, age, body mass index (BMI) and pain intensity on PPT reliability.MethodsTwenty-nine vine-workers voluntarily participated in this study. Twenty-two reported low intensity of low-back pain while seven were pain-free. PPTs were assessed among 14 anatomical locations in the lower back region. Three trials were performed on each location with an interval time of at least one minute. Reliability was assessed computing intraclass correlation coefficients (ICC), standard error of measurement (SEM) for all possible combinations between trials. Bland-Altman plots were also generated to assess potential bias in the dataset. Finally, a repeated measure analysis of variance (RM-ANOVA) with the number of trials used as within subject factor was performed on (1) PPT, (2) ICC and (3) SEM values.ResultsICC ranged from 0.86 to 0.99 for all anatomical locations and for all possible combinations between trials. SEM for comparison between trial 1–2, 2–3, 1–3 and, 1-2-3 ranged from respectively, 36.7–77.5, 27.8–77.7, 50–95.2 and, 39.3–80.8 kPa. ICC and SEM remained similar to the ones obtained for the entire population when taking modifier factors in consideration. The visual analysis of Bland-Altman plots suggested small measurement errors for all anatomical locations and for all possible combinations between trials.ConclusionsThe assessment of PPTs of the lower back among vine-workers was found to have excellent relative and absolute reliability. Moreover, reliable measurements can be equally achieved when using the mean of three PPT measurement or with the first one.
Inertial measurement units (IMUs) are increasingly popular and may be usable in clinical routine to assess gait. However, assessing their intra-session reliability is crucial and has not been tested with foot-worn sensors in healthy participants. The aim of this study was to assess the intra-session reliability of foot-worn IMUs for measuring gait parameters in healthy adults. Twenty healthy participants were enrolled in the study and performed the 10-m walk test in single- and dual-task ('carrying a full cup of water') conditions, three trials per condition. IMUs were used to assess spatiotemporal gait parameters, gait symmetry parameters (symmetry index (SI) and symmetry ratio (SR)), and dual task effects parameters. The relative and the absolute reliability were calculated for each gait parameter. Results showed that spatiotemporal gait parameters measured with foot-worn inertial sensors were reliable; symmetry gait parameters relative reliability was low, and SR showed better absolute reliability than SI; dual task effects were poorly reliable, and taking the mean of the second and the third trials was the most reliable. Foot-worn IMUs are reliable to assess spatiotemporal and symmetry ratio gait parameters but symmetry index and DTE gait parameters reliabilities were low and need to be interpreted with cautious by clinicians and researchers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.