Using pyridine as an example, a thermodynamic analysis of the low temperatures adsorption of aromatic organic molecules with a N atom on the Si(100) surface is presented. This study is restricted to the case of an equilibrium with the gas phase. Dative attachment which is the only way to preserve aromaticity is the more stable form of adsorbed pyridine in dilute solutions at low temperatures. Two factors limit the domain of stability of dative attachment: repulsive interactions between dative bonds prevent them from being present in concentrated solutions while aromaticity contributes to a decrease in the entropy, which explains the vanishing of dative bonds at high temperatures even in dilute solutions.
Silicon nanoparticles (NPs) serve a wide range of optical, electronic, and biological applications. Chemical grafting of various molecules to Si NPs can help to passivate their reactive surfaces, "fine-tune" their properties, or even give them further interesting features. In this work, (1) H, (13) C, and (29) Si solid-state NMR spectroscopy has been combined with density functional theory calculations to study the surface chemistry of hydride-terminated and alkyl-functionalized Si NPs. This combination of techniques yields assignments for the observed chemical shifts, including the contributions resulting from different surface planes, and highlights the presence of physisorbed water. Resonances from near-surface (13) C nuclei were shown to be substantially broadened due to surface disorder and it is demonstrated that in an ambient environment hydride-terminated Si NPs undergo fast back-bond oxidation, whereas long-chain alkyl-functionalized Si NPs undergo slow oxidation. Furthermore, the combination of NMR spectroscopy and DFT calculations showed that the employed hydrosilylation reaction involves anti-Markovnikov addition of the 1-alkene to the surface of the Si NPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.