Abstract. We give a complete characterization of the locally compact groups that are non-elementary Gromov-hyperbolic and amenable. They coincide with the class of mapping tori of discrete or continuous one-parameter groups of compacting automorphisms. We moreover give a description of all Gromov-hyperbolic locally compact groups with a cocompact amenable subgroup: modulo a compact normal subgroup, these turn out to be either rank one simple Lie groups, or automorphism groups of semi-regular trees acting doubly transitively on the set of ends. As an application, we show that the class of hyperbolic locally compact groups with a cusp-uniform non-uniform lattice, is very restricted.
We introduce a geometric invariant, called finite decomposition complexity (FDC), to study topological rigidity of manifolds. We prove for instance that if the fundamental group of a compact aspherical manifold M has FDC, and if N is homotopy equivalent to M, then M × R n is homeomorphic to N × R n , for n large enough. This statement is known as the stable Borel conjecture. On the other hand, we show that the class of FDC groups includes all countable subgroups of GL(n, K), for any field K.
We study growth of 1-cocycles of locally compact groups, with values in unitary representations. Discussing the existence of 1-cocycles with linear growth, we obtain the following alternative for a class of amenable groups G containing polycyclic groups and connected amenable Lie groups: either G has no quasi-isometric embedding into a Hilbert space, or G admits a proper cocompact action on some Euclidean space.On the other hand, noting that almost coboundaries (i.e. 1-cocycles approximable by bounded 1-cocycles) have sublinear growth, we discuss the converse, which turns out to hold for amenable groups with "controlled" Følner sequences; for general amenable groups we prove the weaker result that 1-cocycles with sufficiently small growth are almost coboundaries. Besides, we show that there exist, on a-T-menable groups, proper cocycles with arbitrary small growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.