We present a simultaneous dual-wavelength phase-imaging digital holographic technique demonstrated on porous coal samples. The use of two wavelengths enables us to increase the axial range at which the unambiguous phase imaging can be performed, but also increases the noise. We employ a noise reduction "fine map" algorithm, which uses the two-wavelength phase map as a guide to correct a single-wavelength phase image. Then, the resulting noise of a fine map is reduced to the level of single-wavelength noise. A comparison to software unwrapping is also presented. A simple way of correcting a curvature mismatch between the reference and the object beams is offered.
The recently introduced concept of spatial coherence wavelets is generalized to describe the propagation of electromagnetic fields in the free space. For this aim, the spatial coherence wavelet tensor is introduced as an elementary amount, in terms of which the formerly known quantities for this domain can be expressed. It allows for the analysis of the relationship between the spatial coherence properties and the polarization state of the electromagnetic wave. This approach is completely consistent with the recently introduced unified theory of coherence and polarization for random electromagnetic beams, but it provides further insight about the causal relationship between the polarization states at different planes along the propagation path.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.