Orthogonal frequency division multiplexing (OFDM) isalready started. The increase in overall network capacity can be achieved by an increase in the data rate per wavelength channel, the number of dense wavelength division multiplexing (DWDM) channels per fiber, or the number of applied fibers. The increase in data rate per channel is the most important means for costeffective growth of the overall network capacity from an installation and operation point of view. However,
The cloud edge data center will enable reliable and low latency options for the network, and the interconnection among these data-centers will demand a scalable lowcomplexity scheme. An intensity-modulated and directed detected transmission system is an attractive solution, but chromatic dispersion is the main limitation for higher symbol rate systems. To overcome this challenge, we have proposed and experimentally demonstrated a receiver with shared-complexity between optical and digital domains that enables 80 km transmission reach below KP4 FEC limit for a 32 GBd on-off keying signal. The optical stage consists of optical filters that slices the signal into smaller sub-bands and each is detected by a photodetector. A feedforward neural network and reservoir computing are compared to reconstruct the full signal from the slices and mitigate the chromatic dispersion. Both equalizers have shown similar performance with the advantage of the reservoir computing requiring fewer inputs and easier training process. In this work, we have compared the linear and nonlinear activation functions in the feedforward neural network to investigate the gain of using a nonlinear equalizer. The maximum transmission reach is reduced almost to half, ≈ 45 km, when using the linear. The performance is also reduced if a reduced number of slices is used in the receiver, as we have demonstrated. In this case, using 2 slices to reduce the complexity of the system, instead of the total 4, we have shown a ≈ 55 km transmission reach below KP4 FEC limit. In this work we have also provided a numerical comparison with 4x8 GBd subcarriers system. The results have shown a 40 km increase in transmission reach compared to the proposed optoelectronic system. The trade-off between performance and complexity should be analyzed for each case, as a different hardware is required in each situation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.