This review highlights the research conducted on polymers, especially on polymer nanocomposites for electrical energy storage applications in power capacitors. State-ofthe-art neat polymers are addressed as well as blends of polymers. Special emphasis is given to polymers filled with ceramic nanoparticles -polymer nanocomposites. The aim of this contribution is to overview the different approaches being made to improve the properties of dielectric polymer films for power capacitors. It concludes with an outlook on the research topics that should be addressed in the future.
A new MnZn ferrite tape material for sintering at 900°C and its performance in power electronic embedded multilayer inductors of several μH inductance are described. The low sintering temperature is achieved by optimizing powder processing and sintering additives. The material is suited for processing within the low temperature cofired ceramics (LTCC) technology and it is particularly compatible with low loss Ag metallization. Although reduced by a factor of two compared to high-temperature sintered material, its relative amplitude permeability of 700 allows for numerous device applications below the Curie temperature of 260°C. Volumetric losses are not affected by the new material formulation since increased hysteresis losses are compensated by reduced eddy current losses. Power line filters with ceramic integrated inductors and surface mounted capacitors exhibit a current capacity of up to 10 A and a shift in cutoff frequency compatible with the measured B-H curve of the material. By integration of these inductors with conventional dielectric LTCC tapes a strain-induced permeability quenching is revealed and attributed to magnetostriction. Therefore good thermal matching between tape materials is needed, but the effect also permits construction of variometers and pressure sensors without moving mechanical parts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.