Temperature-controlled release and study on the effects of the drug–polymer interaction and pH.
In the recent years, modern wound dressings have attracted much interest to accelerate wound healing processes with the topical delivery of drugs directly on wounds having a significant effect on wound rehabilitation. The objective of this study was to develop a model dressing that would not only provide wound protection from the environment but might also provide the possibility to keep it moist and deliver a drug for potential speeding the healing process. Poly(ethylene terephthalate), cotton fabrics, and polycaprolactone (PCL) nanofibers were used as different tridimensional porous substrates, loaded with a model drug, clotrimazole. The results show that the chemical structure and surface area to volume ratio of the pristine substrates affect the drug release profile. Coating of such substrates by hydrogels poly(2‐hydroxyethyl methacrylate) (p‐HEMA) and poly(methacrylic acid) (p‐MAA) was successfully achieved by initiated chemical vapor deposition. This method was chosen because it is gentle and solventless and most important it can coat free areas within the three‐dimensional structures. Scanning electron microscopy results revealed that p‐HEMA and p‐MAA conformally coated the fibers of the substrates. Moreover, drug release experiments showed that p‐HEMA and p‐MAA coatings provide barriers preventing sudden drug release. In conclusion, our results indicated the possibility of fabricating dressings containing a drug with tunable drug release profile depending on several parameters even though a strong porous structure exists. © 2019 The Authors. Journal of Applied Polymer Science published by Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47858.
The intact function of the salivary glands is of utmost importance for oral health. During radiotherapy in patients with head and neck tumors, the salivary glands can be damaged, causing the composition of saliva to change. This leads to xerostomia, which is a primary contributor to oral mucositis. Medications used for protective or palliative treatment often show poor efficacy as radiation-induced changes in the physico-chemical properties of saliva are not well understood. To improve treatment options, this study aimed to carefully examine unstimulated whole saliva of patients receiving radiation therapy and compare it with healthy unstimulated whole saliva. To this end, the pH, osmolality, electrical conductivity, buffer capacity, the whole protein and mucin concentrations, and the viscoelastic and adhesive properties were investigated. Moreover, hyaluronic acid was examined as a potential candidate for a saliva replacement fluid. The results showed that the pH of radiation-induced saliva shifted from neutral to acidic, the osmolality increased and the viscoelastic properties changed due to a disruption of the mucin network and a change in water secretion from the salivary glands. By adopting an aqueous 0.25% hyaluronic acid formulation regarding the lost properties, similar adhesion characteristics as in healthy, unstimulated saliva could be achieved.
PurposeThe low aqueous solubility of many drugs impedes detailed investigation as the detection limit of standard testing routines is limited. This is further complicated within application relevant thin films typical used in patches or stripes for buccal or topical routes.MethodsIn this work a model system is developed based on spin – casting technique allowing defined clotrimazole and clotrimazole – polystyrene composite films preparation at a solid surface. Various highly sensitive techniques including quarz crystal microbalance (QCM), X-ray reflevtivity (XRR) and X-ray photon spectroscopy (XPS) are used to investigate the drug release over time into an aqueous media.ResultsThe results reveal a steady drug release for both samples over the course of the experiments but with the release from the composite being significantly slower. In addition the dissolution rate of the clotrimazole sample initially increases up to 30 min after which a decrease is noted. XRR shows that this is a result of surface roughening together with film thickness reduction. The results for the composite show that the release in the composite film is a result of drug diffusion within the matrix and collapsing PS film thickness whereby XPS shows that the amount of clotrimazole at the surface after 800 min immersion is still high.ConclusionIt can be stated that the applied techniques allow following low mass drug release in detail which may also be applied to other systems like pellets or surface loaded nano-carriers providing information for processing and application relevant parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.