A systematic combination of aerial and subsequent geophysical surveys over the six years of the 'Settlement Patterns in Prehistoric Bohemia'project yielded much new and often surprising information about the nature of archaeological sites, features and locations in the agricultural lowlands of Bohemia. Newly discovered and verified large ditches represent a group of very diverse and often, in Bohemian archaeology, atypical linear features. The results of large-area magnetometric surveys aided in mappinglocationsmore preciselyandin the overall separation of linear features, as well asin choosing among probable archaeological interpretations of the sites. Future archaeological verification of more of these identified atypical situations by test trenches would provide more precise dating, and perhaps unambiguous interpretations of prehistoric sites.
Since the twelfth century, forest areas in the upper reaches of the low mountain ranges of central Europe provided an important source of wood and charcoal especially for mining and smelting as well as glass production. In this case study from a site in the upper Erzgebirge region (Ore Mountains), results from archeological, geophysical, pedo-sedimentological, geochemical, However, although glass production is generally assumed to have caused intensive deforestation, the impact on this site appears rather weak compared to the sixteenth century onwards, when charcoal production, probably associated with emerging mining activities in the region, became important.Local deforestation and soil erosion has been associated mainly with this later phase of charcoal production and may indicate that the human impact of glass production is sometimes overestimated.
A combination of geophysical methods could be very a useful and a practical way of verifying the origin and precise localisation of archaeological situations identified by different remote sensing techniques. The results of different methods (and scales) of monitoring these fully non-destructive methods provide distinct data and often complement each other. The presented examples of combinations of these methods/techniques in this study (aerial survey, LIDAR-ALS and surface magnetometer or resistivity survey) could provide information on some specifics and may also be limitations in surveying different archaeological terrains, types of archaeological situations and activities. The archaeological site in this contribution is considered to be a material of this study. In case of Neolithic ditch enclosure near Kolín were compared aerial prospection data, magnetometer survey and aerial photo-documentation of excavated site. In the case of hillforts near Levousy we compared LIDAR data with aerial photography and large-scale magnetometer survey. In the case of the medieval castle Liběhrad we compared LIDAR data with geoelectric resistivity measurement. In case of a burial mound cemetery we combined LIDAR data with magnetometer survey. In the case of the production area near Rynartice we combined LIDAR data with magnetometer and resistivity measurements and result of archaeological excavation. Fortunately for successful combination of geophysical and remote sensing results, their conditions and factors for efficient use in archaeology are not the same. On the other hand, the quality and state of many prehistoric, early medieval, medieval and also modern archaeological sites is rapidly changing over time and both groups of techniques represent important support for their comprehensive and precise documentation and protection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.