Background: Apart from eccentric exercises (EE), isometric exercises (ISO) might be a treatment option for Achilles tendinopathy. Shear wave elastography (SWE) provides information for diagnosis and for monitoring tissue elasticity, which is altered in symptomatic tendons. Hypothesis: Isometric exercises will have a beneficial effect on patients’ outcome scores. Based on SWE, insertional and midportion tendon parts will differ in their elastic properties according to current symptoms. Study Design: Randomized clinical trial. Level of Evidence: Level 2. Methods: Group 1 (EE; n = 20; 12 males, 8 females; mean age, 52 ± 8.98 years) and group 2 (EE + ISO; n = 22; 15 males, 7 females; mean age, 47 ± 15.11 years) performed exercises for 3 months. Measurement points were before exercises were initiated as well as after 1 and 3 months using the Victorian Institute of Sports Assessment–Achilles (VISA-A) score, American Orthopaedic Foot & Ankle Society score, and SWE (insertion and midportion). Results: Both groups improved significantly, but there were no significant interindividual differences (VISA-A; P = 0.362) between group 1 (n = 15; +15 VISA-A) and group 2 (n = 15; +15 VISA-A). The symptomatic insertion (symptomatic, 136.89 kPa; asymptomatic, 174.68 kPa; P = 0.045) and the symptomatic midportion of the Achilles tendon (symptomatic, 184.40 kPa; asymptomatic, 215.41 kPa; P = 0.039) had significantly lower Young modulus compared with the asymptomatic tendons. The midportion location had significantly higher Young modulus than the insertional part of the tendon ( P = 0.005). Conclusion: Isometric exercises do not have additional benefit when combined with eccentric exercises, as assessed over a 3-month intervention period. SWE is able to distinguish between insertional and midportion tendon parts in a symptomatic and asymptomatic state. Clinical Relevance: The present study shows no additional effect of ISO when added to baseline EE in treating Achilles tendinopathy. Different elastic properties of the insertional and midportion tendon have to be taken into consideration when rating a tendon as pathologic.
Background Until recently, rasterstereographic analysis of the spine was limited to static measurements. However, understanding and evaluating the motion of the spine under dynamic conditions is an important factor in the diagnosis and treatment of spinal pathologies. The aim of this study was to study the spinal posture and pelvic position under dynamic conditions and compare it to static measurements using a dynamic rasterstereographic system. Methods A total of 121 healthy volunteers (56 females; 65 males) were included in this observational study. The parameters trunk inclination, trunk imbalance, pelvic obliquity, kyphotic angle, lordotic angle, surface rotation, and lateral deviation were studied and compared under static and dynamic (1, 2, 4, 5 km/h) conditions using the system “Formetric 4D Motion®“ (DIERS International GmbH, Germany). Results Female volunteers had a higher lordotic angle than males under static conditions (p < 0.001). Trunk inclination (5.31° vs. 6.74°), vertebral kyphotic angle (42.53° vs. 39, 59°), and surface rotation (3.35° vs. 3.81°) increase under dynamic conditions (p < 0.001). Trunk inclination and lordotic angle both show significant changes during walking compared to static conditions (p < 0.001). Conclusion The spinal posture differs between females and males during standing and during walking. Rasterstereography is a valuable tool for the dynamic evaluation of spinal posture and pelvic position, which can also be used to quantify motion in the spine and therefore it has the potential to improve the understanding and treatment of spinal pathologies. Trial registration Retrospectively registered
Background Leg length inequalities (LLIs) are a common finding in patients with a total hip arthroplasty (THA). Therefore, we compared the effects of simulated LLIs in patients with total hip arthroplasty (THA) with a matched control group. Research question Do LLIs lead to different effects on the musculoskeletal apparatus of patients with a THA then in a control group? Methods In 99 patients with a THA the effects of simulated LLIs were compared to a matched control group of 101 subjects without a hip arthroplasty. First, we compared methods for LLI quantification (tape measurements, pelvic x- ray and rasterstereography). Second, the effects of simulated LLIs on the spine and pelvis were evaluated in both groups using surface topography. LLIs of 5, 10, 15, 20 and 30 mm were simulated on both sides with a simulation platform. The changes of pelvic position (pelvic obliquity & pelvic torsion) and the effects on spinal posture (surface rotation & lateral deviation) were measured and analysed using a surface topography system. Results Mean LLI measured with a tape was 0.9 mm (SD +/- 14.8). Mean pelvic obliquity measured on x-rays was 1.2 mm (SD +/- 11.6) and with surface topography 0.9 mm (SD +/- 7.9). Simulated LLIs resulted in significant changes of pelvic position and spinal posture in the patient and control group. Interestingly, our study showed that simulated LLIs lead to greater changes in pelvic position (p<0.05) in patients with a THA. Significance This is the first study to demonstrate that LLIs might have a greater impact on the pelvic position of THA patients than in native hips, which could indicate that LLIs do need to be compensated differently in patients with THA than in patients without a THA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.