Предметом досліджень є моделі для класифікації зображень у просторі описів як множини дескрипторів ключових точок при розпізнаванні візуальних об’єктів у системах комп’ютерного зору. Метою є розвинення структурного методу класифікації шляхом впровадження логічного оброблення даних із використанням ймовірнісного розподілу у вигляді статистичного центру. Завдання: розроблення математичних та програмних моделей для обчислення релевантності описів зображень із використанням логічного аналізу, вивчення властивостей, варіантів застосування, значень параметрів моделей, оцінювання результативності за наслідками оброблення експериментальної бази зображень. Застосовуваними методами є: детектор BRISK для формування дескрипторів ключових точок, інтелектуальний аналіз даних, математична статистика, засоби визначення релевантності для множин даних, програмне моделювання. Отримані результати: ефективність способу класифікації на основі логічного аналізу з використанням статистичних центрів залежить від відстаней між центрами еталонів бази. Застосування логічного аналізу спрощує оброблення і підвищує швидкодію класифікації. Найкращі результати щодо класифікації окремих дескрипторів показав підхід з використанням уточнених центрів. Використання концентрованої частки даних опису дає можливість ретельніше зосередитися на його відмінностях з іншими описами. Висновки. Наукова новизна – удосконалення методу класифікації зображень на основі впровадження логічного аналізу на підставі статистичного центру опису, що дає можливість модифікувати склад опису зі збереженням властивостей об’єктів в аспекті результативної класифікації. Практична значущість роботи полягає у досягненні прийнятого рівня ефективності класифікації за визначеною моделлю релевантності, підтвердженні працездатності запропонованих модифікацій оброблення даних на прикладах зображень, розробленні програмних моделей для впровадження описаних методів класифікації у системах комп’ютерного зору.
No abstract
Предметом досліджень статті є моделі для встановлення рівня релевантності зображень у просторі розподілів для дескрипторів ключових точок при розпізнаванні візуальних об’єктів у системах комп’ютерного зору. Метою є створення методу структурного розпізнавання зображень на підставі впровадження ланцюжкових моделей даних із використанням ймовірнісних розподілів множини дескрипторів. Завдання: розроблення математичних та програмних моделей для ефективного за швидкодією аналізу даних при визначенні релевантності структурних описів, вивчення властивостей, атрибутів застосування, значень параметрів цих моделей, оцінювання результативності за наслідками оброблення конкретних зображень. Застосовуваними методами є: детектор BRISK для формування дескрипторів ключових точок, апарат інтелектуального аналізу даних, методи побітового оброблення та побудови розподілів бітових даних, апарат метричного визначення релевантності, програмне моделювання. Отримані такі результати. Перехід від опису множин дескрипторів до ймовірнісних розподілів фрагментів і зіставлення образів у просторі розподілів забезпечують необхідну результативність розпізнавання. Оброблення та аналіз даних виконується у сотні разів швидше, ніж традиційний підрахунок голосів. Оброблення та аналіз сполучень бітів формує значимі властивості для сукупності елементів опису зі збереженням структури даних і їх уніфікації. Зі збільшенням числа бітів у фрагменті розподілу зростає відстань між зображеннями, що сприяє збільшенню ступеня їх розрізнення. Ланцюговим поданням та застосуванням розподілів створюється новий простір даних, що дає можливість суттєво покращити показники функціонування систем розпізнавання зображень. Висновки. Наукова новизна дослідження полягає в удосконаленні методу структурного розпізнавання зображень на основі впровадження узагальненої ланцюгової структури опису із використанням значень розподілу для фрагментів множини дескрипторів ключових точок, що змістовно відображають властивості зображень об’єктів і забезпечують результативне розпізнавання. Практична значущість – досягнення суттєвого рівня підвищення швидкодії обчислення релевантності, підтвердження результативності запропонованих модифікацій на прикладах зображень, отримання прикладних програмних моделей для дослідження та впровадження методів класифікації в системах комп’ютерного зору.
Предметом досліджень статті є моделі для встановлення ступеня релевантності зображень у просторі дескрипторів ключових точок зображень для реалізації структурних методів розпізнавання зорових образів у системах комп’ютерного зору. Метою є проведення експериментального дослідження ефективних за параметром швидкодії модифікацій способів встановлення подібності описів у просторі дескрипторів ключових точок на підставі апарату аналізу бітових даних. Завдання: розроблення математичних та програмних моделей оброблення даних при обчисленні подібності структурних описів, вивчення властивостей та особливостей застосування цих моделей, оцінювання ефективності за результатами оброблення конкретних зображень. Застосовуваними методами є: детектор BRISK для формування дескрипторів ключових точок, інтелектуальний аналіз даних, метод кластеризації к-середніх, методи побітового оброблення та підрахунку частоти входження даних, теорія хешування бітових даних, програмне моделювання. Отримані такі результати. Методи класифікації зображень з використанням подібності описів у просторі дескрипторів ключових точок отримують подальший розвиток та застосування на підставі впровадження апарату аналізу бітових даних. Кластерне подання описів не тільки скорочує час оброблення, але й показує чутливість модифікації методу до незначних особливостей зображення і його можливість широкого застосування у системах комп’ютерного зору. Хешування опису без втрати даних суттєво прискорює (у експерименті у сотні разів) процес обчислення ступеня релевантності описів. Вибрана хеш-функція може впливати на результат і сприяти покращенню рівня розрізнення зображень. Побудова узагальненого опису у вигляді спільного дескриптора значно скорочує час обчислень, при цьому виникає потреба у попередньому обробленні опису з метою формування скороченого опису із списку значущих дескрипторів. Висновки. Наукова новизна дослідження полягає в удосконаленні методу структурного розпізнавання зображень на основі опису як множини дескрипторів ключових точок шляхом застосування апарату кластеризації, виявлення узагальнених властивостей та хешування даних для визначення модифікованих мір релевантності аналізованих та еталонних описів. Практична значущість роботи – досягнення суттєвого рівня підвищення швидкодії обчислення релевантності зображень, підтвердження результативності запропонованих модифікацій на прикладах зображень, отримання прикладних програмних моделей для дослідження та впровадження методів класифікації у системах комп’ютерного зору.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.