Decreased cardiac contractility is a central feature of systolic heart failure. Existing drugs increase cardiac contractility indirectly through signaling cascades but are limited by their mechanism-related adverse effects. To avoid these limitations, we previously developed omecamtiv mecarbil, a small-molecule, direct activator of cardiac myosin. Here, we show it binds to the myosin catalytic domain and operates by an allosteric mechanism to increase the transition rate of myosin into the strongly actin-bound force-generating state. Paradoxically, it inhibits adenosine 5′-triphosphate (ATP) turnover in the absence of actin, which suggests that it stabilizes an actin-bound conformation of myosin. In animal models, omecamtiv mecarbil increases cardiac function by increasing the duration of ejection without changing the rates of contraction. Cardiac myosin activation may provide a new therapeutic approach for systolic heart failure.
Polymerization of actin filaments directed by the Arp2/3 complex supports many types of cellular movements1. However, questions remain regarding the relative contributions of Arp2/3 complex versus other mechanisms of actin filament nucleation to processes such as path finding by neuronal growth cones owing to the lack of simple methods to inhibit Arp2/3 complex reversibly in living cells. Here we describe two classes of small molecules that bind to different sites on Arp2/3 complex and inhibit its ability to nucleate actin filaments. CK-636 binds between Arp2 and Arp3 where it appears to block movement of Arp2 and Arp3 into their active conformation. CK-548 inserts into the hydrophobic core of Arp3 and alters its conformation. Both classes of compounds inhibit formation of actin filament comet tails by Listeria and podosomes by monocytes. Two inhibitors with different mechanisms of action provide a powerful approach for studying Arp2/3 complex in living cells.
Mitosis requires dynamic attachment of chromosomes to spindle microtubules. This interaction is mediated largely by kinetochores. During prometaphase, forces exerted at kinetochores, in combination with polar ejection forces, drive congression of chromosomes to the metaphase plate. A major question has been whether kinetochore-associated microtubule motors play an important role in congression. Using immunodepletion from and antibody addition to Xenopus egg extracts, we show that the kinetochore-associated kinesin-like motor protein CENP-E is essential for positioning chromosomes at the metaphase plate. We further demonstrate that CENP-E powers movement toward microtubule plus ends in vitro. These findings support a model in which CENP-E functions in congression to tether kinetochores to dynamic microtubule plus ends.
Background:Competitors of LEDGF binding to HIV-1 integrase could prevent targeted integration to chromatin. Results: LEDGF competitors like tBPQAs were also found to inhibit integrase enzyme activity by preventing proper integraseviral DNA assembly. Conclusion: tBPQAs are allosteric inhibitors of integrase with a dual mode of action. Significance: Interference with two distinct steps of integration through the same binding site represents a new antiviral paradigm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.