We examined the properties of the nanocomposite γ-FeO@Chi@Pani as an adsorbent of deoxyribonucleic acid (DNA). As a model system, we used an aqueous solution of salmon sperm DNA, whose decreasing concentration was followed by monitoring the 260 nm UV-vis absorption. After adjusting the data collected to a Langmuir isotherm curve, we estimated the adsorption capacity (q) of the nanocomposite as 49.5 mg/g. We also observed that the kinetic model of the DNA capture presents a mixed character, with both chemical mechanisms and intraparticle diffusion processes involved. When the MNC was used to extract the DNA from complex samples (human blood), a capture rate of 80 ng/μL was achieved, with the collected fraction exhibiting good quality, as evaluated by PCR analysis and electrophoresis assays. These results suggest that the γ-FeO@Chi@Pani nanocomposite is a promising adsorbent for use in protocols for purification of DNA from complex samples.
Phosphate ions perform a variety of functions in metabolic processes and are essential for all living organisms. The determination of the concentration of phosphate ions is useful in clinical diagnosis of various diseases as an inadequate phosphate level could lead to many health problems. In the search for a cost-effective method of fast monitoring, we investigated the use of cobalt ferrite nanoparticles (CoFeNPs) in the selective recognition of phosphate ions dissolved in aqueous media and more complex samples, such as human blood serum. We prepared these NPs by a chemical coprecipitation route and subjected them to annealing at 600 °C for 1 h. The successful formation of the NPs was confirmed by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, and hysteresis loop measurements. The NPs exhibited a ferrimagnetic behavior, a spineltype crystalline structure, and hexagonal shape in the nanoscale range. We demonstrated that CoFeNPs containing immobilized fluorescent-labeled single-chain DNA (ssDNA*) probes can be applied for the fast selective detection of phosphate ions dissolved in a liquid medium. We have explored the fact that phosphate groups can displace ssDNA* probes attached to the nanoparticles, therefore causing a perceptible change in the fluorescence signal of the supernatant liquid. This detection method has been tested for the sensing of phosphate ions present both in aqueous solutions and in biological samples, with excellent selectivity and a low limit of detection (∼1.75 nM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.