Two-dimensional nanomaterials play a critical role in biology (e.g., lipid bilayers) and electronics (e.g., graphene) but are difficult to directly synthesize with a high level of precision. Peptoid nanosheet bilayers are a versatile synthetic platform for constructing multifunctional, precisely ordered two-dimensional nanostructures. Here we show that nanosheet formation occurs through an unusual monolayer intermediate at the air-water interface. Lateral compression of a self-assembled peptoid monolayer beyond a critical collapse pressure results in the irreversible production of nanosheets. An unusual thermodynamic cycle is employed on a preparative scale, where mechanical energy is used to buckle an intermediate monolayer into a more stable nanosheet. Detailed physical studies of the monolayer-compression mechanism revealed a simple preparative technique to produce nanosheets in 95% overall yield by cyclical monolayer compressions in a rotating closed vial. Compression of monolayers into stable, free-floating products may be a general and preparative approach to access 2D nanomaterials.
It is becoming increasingly clear that site-specific conjugation offers significant advantages over conventional conjugation chemistries used to make antibody–drug conjugates (ADCs). Site-specific payload placement allows for control over both the drug-to-antibody ratio (DAR) and the conjugation site, both of which play an important role in governing the pharmacokinetics (PK), disposition, and efficacy of the ADC. In addition to the DAR and site of conjugation, linker composition also plays an important role in the properties of an ADC. We have previously reported a novel site-specific conjugation platform comprising linker payloads designed to selectively react with site-specifically engineered aldehyde tags on an antibody backbone. This chemistry results in a stable C–C bond between the antibody and the cytotoxin payload, providing a uniquely stable connection with respect to the other linker chemistries used to generate ADCs. The flexibility and versatility of the aldehyde tag conjugation platform has enabled us to undertake a systematic evaluation of the impact of conjugation site and linker composition on ADC properties. Here, we describe the production and characterization of a panel of ADCs bearing the aldehyde tag at different locations on an IgG1 backbone conjugated using Hydrazino-iso-Pictet-Spengler (HIPS) chemistry. We demonstrate that in a panel of ADCs with aldehyde tags at different locations, the site of conjugation has a dramatic impact on in vivo efficacy and pharmacokinetic behavior in rodents; this advantage translates to an improved safety profile in rats as compared to a conventional lysine conjugate.
The design and synthesis of protein-like polymers is a fundamental challenge in materials science. A means to achieve this goal is to create synthetic polymers of defined sequence where all relevant folding information is incorporated into a single polymer strand. We present here the aqueous self-assembly of peptoid polymers (N-substituted glycines) into ultrathin, two-dimensional highly ordered nanosheets, where all folding information is encoded into a single chain. The sequence designs enforce a two-fold amphiphilic periodicity. Two sequences were considered: one with charged residues alternately positive and negative (alternating patterning), and one with charges segregated in positive and negative halves of the molecule (block patterning). Sheets form between pH 5 and 10 with the optimal conditions being pH 6 for the alternating sequence and pH 8 for the block sequence. Once assembled, the nanosheets remain stable between pH 6 and 10 with observed degradation beginning to occur below pH 6. The alternating charge nanosheets remain stable up to concentrations of 20% acetonitrile, whereas the block pattern displayed greater robustness remaining stable up to 30% acetonitrile. These observations are consistent with expectations based on considerations of the molecules' electrostatic interactions. This study represents an important step in the construction of abiotic materials founded on biological informatic and folding principles.
Aldehyde- and ketone-functionalized biomolecules have found widespread use in biochemical and biotechnological fields. They are typically conjugated with hydrazide or aminooxy nucleophiles under acidic conditions to yield hydrazone or oxime products that are relatively stable, but susceptible to hydrolysis over time. We introduce a new reaction, the hydrazino-Pictet-Spengler (HIPS) ligation, which has two distinct advantages over hydrazone and oxime ligations. First, the HIPS ligation proceeds quickly near neutral pH, allowing for one-step labeling of aldehyde-functionalized proteins under mild conditions. Second, the HIPS ligation product is very stable (>5 days) in human plasma relative to an oxime-linked conjugate (∼1 day), as demonstrated by monitoring protein-fluorophore conjugates by ELISA. Thus, the HIPS ligation exhibits a combination of product stability and speed near neutral pH that is unparalleled by current carbonyl bioconjugation chemistries.
Proton transfer is ubiquitous in chemistry and biology, occurring, for example, in proteins, enzyme reactions and across proton channels and pumps. However, it has always been described in the context of hydrogen-bonding networks ('proton wires') acting as proton conduits. Here, we report efficient intramolecular ionization-induced proton transfer across a 1,3-dimethyluracil dimer, a model π-stacked system with no hydrogen bonds. Upon photoionization by tunable vacuum ultraviolet synchrotron radiation, the dimethyluracil dimer undergoes proton transfer and dissociates to produce a protonated monomer. Deuterated dimethyluracil experiments confirm that proton transfer occurs from the methyl groups and not from the aromatic C-H sites. Calculations reveal qualitative differences between the proton transfer reaction coordinate in the π-stacked and hydrogen-bonded base pairs, and that proton transfer in methylated dimers involves significant rearrangements of the two fragments, facilitating a relatively low potential energy barrier of only 0.6 eV in the ionized dimer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.