We report the conditions of a multiplex-amplifiction refractory mutation system (ARMS) for genotyping for nine known mutations of the α α2-globin gene and of the ARMS assay for the detection of α α1 Hb J-Oxford and -α α3.7 -AC. The method is reproducible, reliable, simple, rapid, inexpensive and provides genotype diagnosis in >70% of pointmutation carriers in Mediterranean countries. Moreover, it allows investigation of the structure of mutated alleles by sequencing ARMS-amplicons. Haematologica 2007; 92:254-255 α-thalassemia is a hereditary microcytic anemia caused by structural defects involving one or both of the duplicated 5'-3' α2 (833 bp) and α1 (841 bp) globin genes, clustered in tandem on chromosome 16 and showing >96% homology.
We identified two new variants in the third exon of the α-globin gene in families from southern Italy: the Hb Rogliano, α1 cod108 ACC>AAC or α1[α108(G15)Thr→Asn] and the Hb Policoro, α2 cod124 TCC>CCC or α2[α124(H7)Ser→Pro]. The carriers showed mild α-thalassemia phenotype and abnormal hemoglobin stability features. These mutations occurred in the G and H helices of the α-globin both involved in the specific recognition of AHSP and β1 chain. Molecular characterization of mRNA, globin chain analyses and molecular modelling studies were carried out to highlight the mechanisms causing the α-thalassemia phenotype. The results demonstrated that the α-thalassemia defect associated with the two Hb variants originated by different defects. Hb Rogliano showed an intrinsic instability of the tetramer due to anomalous intra- and inter-chain interactions suggesting that the variant chain is normally synthesized and complexed with AHSP but rapidly degraded because it is unable to form the α1β1 dimers. On the contrary in the case of Hb Policoro two different molecular mechanisms were shown: the reduction of the variant mRNA level by an unclear mechanism and the protein instability due to impairment of AHSP interaction. These data highlighted that multiple approaches, including mRNA quantification, are needed to properly identify the mechanisms leading to the α-thalassemia defect. Elucidation of the specific mechanism leads to the definition of a given phenotype providing important guidance for the diagnosis of unstable variants.
In this study, we report the first (ϵγδβ)(0)-thalassemia case identified in Italy. To avoid misdiagnosis of β-thalassemia, we suggest verifying the presence of large deletions of the β-globin gene cluster in subjects showing a higher border line level of Hb A2 and a lower level of Hb.
The increase of Hb A(2) (α2δ2) beyond the upper limit [2.0-2.2/3.3-3.4% of the total hemoglobin (Hb)] is an invaluable tool in the hematological screening of β-thalassemia (β-thal) carriers. Factors decreasing Hb A(2) percentages can hinder correct diagnosis. In order to analyze the genotype-phenotype relationship, we characterized δ-, β- and α-globin genotypes in 190 families where the probands had Hb A(2) values of ≤2.0% or were β-thal heterozygotes with normal Hb A(2) levels. Hb A(2) was measured with cation exchange high performance liquid chromatography (HPLC). Mutations were detected with allele-specific methods or DNA sequencing; two multiplex-ARMS (amplification refractory mutation system) assays were set up. The molecular basis underlying the decrease in Hb A(2) was extremely heterogeneous. Nineteen δ-globin alleles (Hb A(2)-S.N. Garganico was new) were detected; their interaction with α- or β-globin alleles (10 and eight, respectively) led us to observe 52 genotypes in 261 carriers. The type of δ-globin mutations, the relative genotypes, the interaction with α(0)-thal traits, are the most important factors in decreasing the Hb A(2) percentage. These results are extremely useful in addressing the molecular diagnosis of hemoglobinopathies and thalassemias.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.