The antibacterial effects against Staphylococcus epidermidis of five silver carboxylate complexes with anti-inflammatory ligands were studied in order to analyze and compare them in terms of stability (in solution and after exposure to UV light), and their antibacterial and morphological differences. Four effects of the Ag-complexes were evidenced by transmission electronic microscopy (TEM) and scanning electronic microscopy (SEM): DNA condensation, membrane disruption, shedding of cytoplasmic material and silver compound microcrystal penetration of bacteria. 5-Chlorosalicylic acid (5Cl) and sodium 4-aminosalicylate (4A) were the most effective ligands for synthesizing silver complexes with high levels of antibacterial activity. However, Ag-5Cl was the most stable against exposure UV light (365 nm). Cytotoxic effects were tested against two kinds of eukaryotic cells: murine fibroblast cells (T10 1/2) and human epithelial ovarian cancer cells (A2780). The main objective was to identify changes in their antibacterial properties associated with potential decomposition and the implications for clinical applications.
Silver nanoparticles (AgNPs) have been extensively studied during recent decades as antimicrobial agents. However, their stability and antibacterial activity over time have yet to be sufficiently studied. In this work, AgNPs were coated with different stabilizers (naproxen and diclofenac and 5-chlorosalicylic acid) in different concentrations. The suspensions of nanostructures were characterized by transmission electron microscopy, UV–Vis and FT-IR spectroscopic techniques. The antibacterial activity as a function of time was determined through microbiological studies against Staphylococcus aureus. The AgNPs show differences in stabilities when changing the coating agent and its concentration. This fact could be a consequence of the difference in the nature of the interaction between the stabilizer and the surface of the NPs, which were evaluated by FT-IR spectroscopy. In addition, an increase in the size of the nanoparticles was observed after 30 days, which could be related to an Ostwald maturation phenomenon. This result raises new questions about the role that stabilizers play on the surface of NPs, promoting size change in NPs. It is highly probable that the stabilizer functions as a growth controller of the NPs, thus determining an effect on their biological properties. Finally, the antibacterial activity was evaluated over time against the bacterium Staphylococcus aureus. The results showed that the protective or stabilizing agents can play an important role in the antibacterial capacity, the control of the size of the AgNPs and additionally in the stability over time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.