Many supervised machine learning algorithms require a discrete feature space. In this paper, we review previous work on continuous feature discretization, identify de ning characteristics of the methods, and conduct an empirical evaluation of several methods. We compare binning, an unsupervised discretization method, to entropy-based and purity-based methods, which are supervised algorithms. We found that the performance of the Naive-Bayes algorithm signi cantly improved when features were discretized using an entropy-based method. In fact, over the 16 tested datasets, the discretized version of Naive-Bayes slightly outperformed C4.5 on average. We also show that in some cases, the performance of the C4.5 induction algorithm signi cantly improved if features were discretized in advance; in our experiments, the performance never signi cantly degraded, an interesting phenomenon considering the fact that C4.5 is capable of locally discretizing features.
The web provides an unprecedented opportunity to evaluate ideas quickly using controlled experiments, also called randomized experiments, A/B tests (and their generalizations), split tests, Control/Treatment tests, MultiVariable Tests (MVT) and parallel flights. Controlled experiments embody the best scientific design for establishing a causal relationship between changes and their influence on user-observable behavior. We provide a practical guide to conducting online experiments, where endusers can help guide the development of features. Our experience indicates that significant learning and return-on-investment (ROI) are seen when development teams listen to their customers, not to the Highest Paid Person's Opinion (HiPPO). We provide several examples of controlled experiments with surprising results. We review the important ingredients of running controlled experiments, and discuss their limitations (both technical and organizational). We focus on several areas that are critical to experimentation, including statistical power, sample size, and techniques for variance reduction. We describe common architectures for experimentation systems and analyze their advantages and disadvantages. We evaluate randomization and hashing techniques, which we show are not as simple in practice as is often assumed. Controlled 123Controlled experiments on the web 141 experiments typically generate large amounts of data, which can be analyzed using data mining techniques to gain deeper understanding of the factors influencing the outcome of interest, leading to new hypotheses and creating a virtuous cycle of improvements. Organizations that embrace controlled experiments with clear evaluation criteria can evolve their systems with automated optimizations and real-time analyses. Based on our extensive practical experience with multiple systems and organizations, we share key lessons that will help practitioners in running trustworthy controlled experiments.
Abstract. We evaluate the power of decision tables as a hypothesis space for supervised learning algorithms. Decision tables are one of the simplest hypothesis spaces possible, and usually they are easy to understand. Experimental results show that on artificial and real-world domains containing only discrete features, IDTM, an algorithm inducing decision tables, can sometimes outperform state-of-the-art algorithms such as C4.5. Surprisingly, performance is quite good on some datasets with continuous features, indicating that many datasets used in machine learning either do not require these features, or that these features have few values. We also describe an incremental method for performing crossvalidation that is applicable to incremental learning algorithms including IDTM. Using incremental cross-validation, it is possible to cross-validate a given dataset and IDTM in time that is linear in the number of instances, the number of features, and the number of label values. The time for incremental cross-validation is independent of the number of folds chosen, hence leave-one-out cross-validation and ten-fold cross-validation take the same time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.