Corn starch-based films are inherently brittle and lack the necessary mechanical integrity for conventional packaging. However, the incorporation of additives can potentially improve the mechanical properties and processability of starch films. In this work two essential oils, Zataria multiflora Boiss (ZEO) or Mentha pulegium (MEO) at three levels (1%, 2% and 3% (v/v)), were incorporated into starch films using a solution casting method to improve the mechanical and water vapour permeability (WVP) properties and to impart antimicrobial activity.
Pulses, including peas, are a good source of protein, dietary fiber, folic acid, and iron and are reported to reduce the risk for cardiovascular disease and diabetes. However, pulse ingredients present a known challenge as they exhibit a grassy/beany off-flavor. Heat treatment in some cases can decrease this off-flavor. The objective of this study was to determine the effect of substitution of 20% split yellow pea (SYP) flour treated by Revtech thermal processing at 140°C with 10% steam (RT10%) and without steam (RT0%) for wheat flour in bread on the sensory attributes, acceptability, nutrient composition, firmness, color, and pH. RT10% was more acceptable overall than bread with untreated pea flour (USYP) or RT0% as assessed by 110 consumers. Sensory attributes were defined and measured on 15-cm line scales by an 11 member trained panel. Attributes associated with RT10% included wheaty, sweet, and yeast aromas and wheaty flavor, whereas attributes associated with USYP and RT0% were pea and nutty aroma and flavor. Although firmness and dryness were higher in RT10%, the acceptability of the bread texture was not affected. This sample contained significantly higher protein and lower carbohydrate than the wheat sample.Practical Application: Revtech (RT), a novel thermal process, when applied at 140°C with steam to split yellow pea (SYP) flour successfully increased the acceptability of white pan bread fortified at 20% compared to bread fortified with RT 140°C with no steam, and untreated SYP flours. This could be due to its association with wheaty aroma and flavor attributes rather than the pea aroma and flavor attributes of the other two breads.
The purpose of this study was to determine the effect of ultrasound treatment on the contents of daidzin, genistin, and their respective aglycones, daidzein and genistein, in resultant soymilk. Soybean slurry was exposed to ultrasound treatment, filtered, and placed in an ultrasound cleaning bath set with different frequencies (35and 130 KHz), treatment temperatures (20 and 40°C), and times (20, 40, and 60 min). Concentrations for these isoflavones were determined using reverse-phase high-performance liquid chromatography. Results indicated that both frequencies significantly (p<0.05) increased isoflavone content (IC), glycosides, and aglycones in extracted soymilk. These results were attributed to induced cavitation, which increases the permeability of plant tissues. However, the frequency of 35 kHz caused a noticeably higher increase in IC than 130 kHz. Results also revealed significant increases in IC with increased sonication time (from 20 to 60 min) and with increased temperature (from 20 to 40°C).
Yellow pea (Pisumsativum L.) is an economically rich source of nutrients with health-promoting effects. However, the consumption of pea ingredients is minimal due to their off-flavor characteristics. The present study investigated the effect of Revtech heat treatment on the chemical profile and volatile compounds in split yellow pea flour. Revtech treatment (RT) was applied at 140 • C with a residence time of 4 min in dry condition (RT 0%) and in the presence of 10% steam (RT 10%). Both thermal treatments resulted in a significant reduction (p < 0.05) in lipoxygenase activity and the concentration of key beany-related odors such as heptanal, (E)-2-heptenal, 1-octen-3-ol, octanal, and (E)-2-octenal. In addition, RT 10% resulted in a significant reduction in pentanal, 1-penten-3-ol, hexanal, and 1-hexanol compared to untreated flour. The content of known precursors of lipoxygenase such as linoleic and linolenic acids was found in higher concentrations in heat-treated flours, indicating the efficacy of Revtech technology in minimizing the degradation of polyunsaturated fatty acids. No significant changes in the amino acid composition or the 29 selected phenolic compounds in pea flours were observed with Revtech processing except for two compounds, caffeic acid and gallocatechin, which were found at higher concentrations in RT 0%. Practical Application: Thermal processing of split yellow pea flours at 140 • C using Revtech technology successfully decreased the concentrations of volatile compounds responsible for beany off-flavor while improving the nutritional quality of studied yellow pea flours. These results provide valuable information to the food industry for developing novel pulse-based products with enhanced sensory characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.