Interactions between central corticotropin-releasing factor (CRF) and serotonergic systems are believed to be important for mediating fear and anxiety behaviors. Recently we demonstrated that infusions of CRF into the rat dorsal raphe nucleus result in a delayed increase in serotonin release within the medial prefrontal cortex that coincided with a reduction in fear behavior. The current studies were designed to study the CRF receptor mechanisms and pathways involved in this serotonergic response. Infusions of CRF (0.5 microg/0.5 microL) were made into the dorsal raphe nucleus of urethane-anesthetized rats following either inactivation of the median raphe nucleus by muscimol (25 ng/0.25 microL) or antagonism of CRF receptor type 1 or CRF receptor type 2 in the dorsal raphe nucleus with antalarmin (25-50 ng/0.5 microL) or antisauvagine-30 (2 microg/0.5 microL), respectively. Medial prefrontal cortex serotonin levels were measured using in-vivo microdialysis and high-performance liquid chromatography with electrochemical detection. Increased medial prefrontal cortex serotonin release elicited by CRF infusion into the dorsal raphe nucleus was abolished by inactivation of the median raphe nucleus. Furthermore, antagonism of CRF receptor type 2 but not CRF receptor type 1 in the dorsal raphe nucleus abolished CRF-induced increases in medial prefrontal cortex serotonin. Follow-up studies involved electrical stimulation of the central nucleus of the amygdala, a source of CRF afferents to the dorsal raphe nucleus. Activation of the central nucleus increased medial prefrontal cortex serotonin release. This response was blocked by CRF receptor type 2 antagonism in the dorsal raphe. Overall, these results highlight complex CRF modulation of medial prefrontal cortex serotonergic activity at the level of the raphe nuclei.
Four nonvolatile nerve agent surrogates, 4-nitrophenyl ethyl dimethylphosphoramidate (NEDPA, a tabun surrogate), 4-nitrophenyl ethyl methylphosphonate (NEMP, a VX surrogate), and two sarin surrogates, phthalimidyl isopropyl methylphosphonate (PIMP) and 4-nitrophenyl isopropyl methylphosphonate (NIMP), were synthesized and tested as acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitors. These surrogates were designed to phosphorylate cholinesterases with the same moiety as their respective nerve agents, making them highly relevant for the study of cholinesterase reactivators. Surrogates were characterized by liquid chromatography-mass spectrometry and nuclear magnetic resonance. NEMP, PIMP, and NIMP were potent inhibitors of rat brain, skeletal muscle, diaphragm, and serum AChE as well as human erythrocyte AChE and serum BuChE in vitro. PIMP was determined to degrade quickly in aqueous solution, making it useful for in vitro assays only, and NEDPA was not a potent inhibitor of AChE or BuChE in vitro; therefore, these two surrogates were not tested in subsequent in vivo studies. Sublethal dosages (yielding about 80% brain AChE inhibition) were determined for both the stable sarin surrogate, NIMP (0.325 mg/kg ip), and the VX surrogate, NEMP (0.4 mg/kg ip), in adult male rats. Time course studies indicated the time to peak brain AChE inhibition for both NIMP and NEMP to be 1 h postexposure. Both surrogates yielded severe cholinergic signs. These dosages did not require the addition of atropine to prevent lethality, and the rate of AChE aging was slow, making these surrogates useful for reactivation studies both in vitro and in vivo. The surrogates synthesized in this study are potent yet safer to test than nerve agents and are useful tools for initial screening of nerve agent oxime therapeutics.
Selective-breeding of house mice for increased voluntary wheel-running has resulted in multiple physiological and behavioral changes. Characterizing these differences may lead to experimental models that can elucidate factors involved in human diseases and disorders associated with physical inactivity, or potentially treated by physical activity, such as diabetes, obesity, and depression. Herein, we present ethological data for adult males from a line of mice that has been selectively bred for high levels of voluntary wheel-running and from a non-selected control line, housed with or without wheels. Additionally, we present concentrations of central monoamines in limbic, striatal, and midbrain regions. We monitored wheel-running for 8 weeks, and observed home-cage behavior during the last 5 weeks of the study. Mice from the selected line accumulated more revolutions per day than controls due to increased speed and duration of running. Selected mice exhibited more active behaviors than controls, regardless of wheel access, and exhibited less inactivity and grooming than controls. Selective-breeding also influenced the longitudinal patterns of behavior. We found statistically significant differences in monoamine concentrations and associated metabolites in brain regions that influence exercise and motivational state. These results suggest underlying neurochemical differences between selected and control lines that may influence the observed differences in behavior. Our results bolster the argument that selected mice can provide a useful model of human psychological and physiological diseases and disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.