Magnonic devices that utilize electric control of spin waves mediated by complex spin textures are an emerging direction in spintronics research. Room-temperature multiferroic materials, such as bismuth ferrite (BiFeO3), would be ideal candidates for this purpose. To realize magnonic devices, a robust long-range spin cycloid with well-known direction is desired, since it is a prerequisite for the magnetoelectric coupling. Despite extensive investigation, the stabilization of a large-scale uniform spin cycloid in nanoscale (100 nm) thin BiFeO3 films has not been accomplished. Here, we demonstrate cycloidal spin order in 100 nm BiFeO3 thin films through the careful choice of crystallographic orientation, and control of the electrostatic and strain boundary conditions. Neutron diffraction, in conjunction with X-ray diffraction, reveals an incommensurate spin cycloid with a unique [11] propagation direction. While this direction is different from bulk BiFeO3, the cycloid length and Néel temperature remain equivalent to bulk at room temperature.
Ferroelastic domain switching significantly affects piezoelectric properties in ferroelectric materials. The ferroelastic domain switching and the lattice deformation of both a-domains and c-domains under an applied electric field were investigated using in-situ synchrotron X-ray diffraction in conjunction with a high-speed pulse generator set up for epitaxial (100)/(001)-oriented tetragonal Pb(Zr0.4Ti0.6)O3 (PZT) films grown on (100)cSrRuO3//(100)KTaO3 substrates. The 004 peak (c-domain) position shifts to a lower 2θ angle, which demonstrates the elongation of the c-axis lattice parameter of the c-domain under an applied electric field. In contrast, the 400 peak (a-domain) shifts in the opposite direction (higher angle), thus indicating a decrease in the a-axis lattice parameter of the a-domain. 90° domain switching from (100) to (001) orientations (from a-domain to c-domain) was observed by a change in the intensities of the 400 and 004 diffraction peaks by applying a high-speed pulsed electric field 200 ns in width. This change also accompanied a tilt in the angles of each domain from the substrate surface normal direction. This behaviour proved that the 90° domain switched within 40 ns under a high-speed pulsed electric field. Direct observation of such high-speed switching opens the way to design piezo-MEMS devices for high-frequency operation.
Giant electromechanical response viaferroelastic domain switching is achieved in epitaxial (001) ferroelectric tetragonal (T) PbZr0.3Ti0.7O3/rhombohedral (R) PbZr0.55Ti0.45O3 bilayers, grown on La0.67Sr0.33MnO3 buffered SrTiO3 substrates. X‐ray diffraction and transmission electron microscopy show that the domain structure of the T films is tuned as a function of its thickness, from a fully a1/a2‐domains (30 nm thick T layer) to a three domain stress‐free c/a1/c/a2 polytwin state (100 nm thick T layer). A large switchable polarization is found up to 65 μC cm−2. Quantitative piezoelectric force microscopy reveals enhanced piezoelectric coefficients, with d33 coefficients ranging from 250 to 350 pm V−1, which is up to seven times higher than the nominal PbZrxTi1−xO3 thin film values. These are attributed to the motion of nanoscale ferroelastic domains. Fatigue testing proves that these domains are reversible and repeatable up to 107 cycles. In‐situ X‐ray synchrotron measurements reveal that the ferroelastic domain switching is promoted by a pulsating strain effect imposed by the R layer. The study reports a fundamental understanding of the origin of giant piezoelectric coefficients in epitaxial ferroelectric bilayers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.